Using Xilinx FPGAs to Implement Neural Networks and Fuzzy Systems

JJ Blake, LP Maguire, TM McGinnity, LJ McDaid

1. Introduction

Over the last thirty years, since Zadeh first introduced fuzzy set theory, there has been widespread interest in the real-time
application of fuzzy logic, particularly in the area of control [LEE0). Recently, there has been considerable interest in the
development of dedicated hardware implementations [YAMAKAWA93, WATANABE90] which facilitate high. speed
processing. However, the main drawback of such an approach is that it is only cost effective for high-volume applications.
A more feasible methodology for lower volume problems demands the application of general-purpose or programmable
hardware such as the Xilinx FPGAs. There has been a similar trend in the area of neural networks, as initial research
employed software simulations but more recent interest has investigated hardware implementations [BOTROS93].

FPGAs are becoming increasingly popular for prototyping and designing complex hardware systems. The
structure of a FPGA can be described as an “array of blocks” connected together via programmable interconnections. The .
main advantage of FPGAs is the flexibility that they afford. An engineer can change and refine a device’s design by
exploiting the device’s reprogrammability. Xilinx introduced the world’s first FPGA, the XC2064, in 1985. This
contained approximately 1000 logic gates. Since then, the gate density of Xilinx FPGAs has increased 25 times. There has
been a lot of recent interest in the FPGA realisation of fuzzy systems [MANZOUL9S, SALAPURA9S]. Similarly there are a
number of FPGA implementations of neural networks reported in the literature [ELDREDGE96, BADE94]. However, this
paper provides a report on the implementation of both architectures and also offers a comparison with the hybrid structure.

2. Circuit Elements
The application selected in this work was a non-linear function approximation problem given by equation | :
y = (1 o+ 1P+ x5l o+ gl)2 i)

where xj, X, and x; are the three input variables confined to the range 1 to 5. This highly non-linear problem has been
employed by a number of other researchers to demonstrate the ability of both fuzzy and neuro-fuzzy systems. The inputs
and weights of the two systems are represented using a special 8 bit encoding technique where 10000000 represents 4,
01000000 represents 2 00000001 represents 0.03125. Various numbers are represented by simply adding these
values together. Table 1 illustrates the various different components that make up the three systems and the following
sections describes the methods employed to implement them in hardware :

Neural Network Fuzzy Logic
Multipliers Multipliers
Activation Function (Sigmoid) MIN operators
Summers Summers

Table 1 Components used in the two systems
2.1 Multiplier Design
The multiplier design utilized is a two-input 8 bit multiplier. Fig. 1 shows a block diagram of the multiplier design. The
input to the multiplier (the multiplicand) is divided by 16 and then repeated addition is carried out to obtain the output. In
such a design there is a trade-off between bit resolution and hardware size.

Multiplicand 4 Divideby 16 ‘ Adder ‘ Output
(Input) :
T
Multiplier ——, Counter
(Weight)

Fig. 1 Block Diagram of the Multiplier Circuit
Facuity of Enginccrin‘g. University of Ulster, Magee College. Northland Rd., Derry

/1

2.2 Activation Function (Sigmoid)

The sigmoid function is the traditional nonlinear activation function used in neural networks. The sigmoid function is not
suitable for direct digital implementation as it consists of an infinite exponential series. Many implementations use a
lookup table to approximate the sigmoid function. However the amount of hardware required for these tables can be quite
large especially if one required a reasonable approximation. A simple second order nonlinear function exists which can be
used as an approximation to a sigmoid function [Kwan 92]. This nonlinear function can be implemented directly using
digital techniques. The following equation is a second order nonlinear function which has a tanh-like transition between
the upper and lower saturation regions :

zZ(p -0 z) for 0<£z<L
zZ(B+0 z) for —L<z<L

where Band 6 represent the slope and the gaini of the nonlinear function F(z) between the saturation regions - Land L .
Fig. 2 shows a block diagram of the activation function implemented using this process.

F(z)= wl2)

!

z Shift Register Adder > Multiplier |4 F(2)
+0 B -

Fig. 2 Block Diagram of the Sigmoid Function

F(z) is implemented by one binary shift , one binary addition and one multiplication. Fig. 3 shows the comparison
between the bipolar sigmoid and the hardware approximation. This clearly shows that the hardware realization of the
sigmoid function provides a reasonable approximation to this function.

Compering Hardvare Signoid wih the Bpoisr Sigmad

n

T

o
w

Bipolar
Sigmoid

&
@

Hardware
Approximation

“Tansig” endihe “Second Orcer Furction?'
o

2 E 4 05 [0s 1 15 2
o

Fig. 3 Bipolar Sigmoid Function and Hardware Approximation

2.3 MIN Operators

The intersection of the fuzzy rules in the fuzzy logic circuit was implemented using the MIN operator. This operator was
employed in preference to a PRODUCT operator because its hardware realization reduced the amount of circuitry
necessary and therefore minimized the CLB utilization of the FPGA. The MIN operator was implemented using two
subtractors as illustrated in Fig. 4 for the problem of determining the minimum of three inputs.

A —n Minimum of A, B Minimum of A, Band C
B — Subtractor Subtractor [T

A 4

C —¥

Fig. 4 Block Diagram of MIN Operator
24 Summers
The maximum number obtained from the non-linear approximation problem is approximately 27.42, when the input
variables are confined to the range 1 to 5. This number can be represented by the encoding technique as 0000 0011 0110
1110. Therefore to accommodate *his number in the coding scheme the summers utilized are 16 bit adders. These adders
are the only 16 bit devices in the two architectures.

1/2

3. The fuzzy and neural network architectures

The following sections provide an overview of the representation of the fuzzy system and neural network employed in this
work. All the architectures were first implemented using the MATLAB neural network toolbox. The weights obtained
from the implementation were then used in the hardware realizations. Both of the architectures were evaluated using an
arbitrary set of twenty input-output pairs.

3.1 Fuzzy Logic

Fuzzy inference systems have been successfully applied in a diverse range of areas and as a result of this multi-disciplinary
approach there has evolved a range of different approaches and nomenclatures. The interpretation of fuzzy reasoning used
in this work is commonly referred to as a zero-order Sugeno fuzzy model [SUGENO88]. In this model the consequent of
each fuzzy IF THEN rule is represented by a fuzzy singleton. As a result, the inferred output from each rule is defined as a
crisp value induced by the rule’s firing strength. The overall output is taken as the weighted average of each rule’s output
which avoids the time consuming process of defuzzification. Thus for an n-input single output problem where each input
domain is partitioned into p fuzzy sets, there will be p" rules and a total of np distinct fuzzy sets. Fig. 5(a) illustrates the
layout of the circuit and the four stages of the fuzzy reasoning process: fuzzification, intersection, implication and
defuzzification.

The partitioning strategy selected used two triangular fuzzy sets on each input domain, which can be termed
Small and Big. Note the Small set has a maximum membership value for a 1 input and a minimum membership value for
5. The set Big is the converse of the Small set. The membership values of these inputs was realized in hardware using
ordinary shift registers and adders. The MIN operator was used for the intersection of the fuzzy rules. Multipliers were
used in the implication process while the defuzzification process uses a summer.

The results (see Section 4) demonstrated that the fuzzy approach is relatively poor at approximating this function
except at those cases where the inputs are 1 and 5 corresponding to the fuzzy set definitions. This is as expected as in the
interval between 1 and 5 the fuzzy system is effectively performing linear interpolation to obtain an approximate value of
the output. However it was found that the hardware results offer a similar degree of accuracy as the results achieved in
software.

3.2 Neural Network

The neural network architecture employed was the conventional three layer feedforward architecture (see Fig. 5(b)). The
nodes in the first layer simply broadcast the inputs and perform no processing, and an n-input problem requires n nodes in
this layer. The determination of the number of nodes in the hidden layer is more arbitrary and application dependent. In
this work, the number of nodes was selected by choosing a network which was of similar dimension to the fuzzy system
and yet of appropriate size to perform the approximation accurately. A sigmoid non-linear squashing function was utilized
in each of these nodes in the hidden layer. As this is a single output application there is only one node in the output layer
which is essentially a summer. The results obtained are more accurate indicating that the neural network is more effective
at approximating the function (see Section 4).

Detuzzicotion

Fig. 5(a) Fuzzy Logic architecture Fig. 5(b) Neural Network architecture

173

4. Discussion
The accuracy of the results were evaluated using the following performance index :

1 &d -y
J== Gy 100%
T i=1 i
where d;and y;are the target output and the output inferred from the two systems respectively for the i" data pair for a total

of T data sets. The performance index results, expressed as a percentage, are presented in Table 2 using the twenty training
data. '

System J(%) Software J(%) Hardware CLB Utilization Suitable FPGA
Fuzzy Logic 55.40% 51.97% 286 CLBs XC4008
Neural Network 13.05% 20.29% 1290 CLBs XC4025+XC4005

Table 2 Performance and CLB Utilization of the three systems

The fuzzy system approach demonstrates a very poor approximation ability of this non-linear function. This, however can
be explained as the fuzzy reasoning adapted a very crude partitioning strategy with only two sets on the input domains.
Clearly this is not sufficient for this problem. Similiarly a neural network with more neurons in the hidden layer would
probably have given a better performance index. However a neural network with more hidden neurons would demand a
larger circuit and more dense interconnections.

The CLB utilization of the two architectures is also given in Table 2. The fuzzy logic implementation is the
smallest circuit in terms of CLB usage. The neural network consumed the most CLBs, a total of 1290 CLBs which may be
implemented on two FPGAs, an XC4025 and an XC4005.

S. Conclusion '

The results of this work successfully demonstrate the hardware implementation of fuzzy systems and neural networks
using Xilinx FPGAs. This allows comparisons to be made between the hardware realisations of these technologies. The
paper used a modular approach to identify elements of each architecture. A three input non-linear function approximation
problem was employed to demonstrate the validity of the different architectures. A software simulation was used to
benchmark the accuracy of the results and to enable comparisons with actual results.

Although the fuzzy logic used the least amount of CLBs it provided a poor approximation of the problem. In
contrast the neural network gave a reasonable approximation but consumed a larger number of CLBs. The continual
developments in FPGA technology and their associated cost, and reprogrammability make this approach a viable
alternative to the development of custom hardware for real-time applications.

References

[BADE94] Bade, S; Hutchings, BL; "FPGA based stochastic neural network implementation”, Proc. IEEE
workshop on FPGAs for Custom Computing Machines, pp.189-198,1994.

[BOTROS93] NM Botros; M. Abdul-Aziz: “‘Hardware implementation of an artificial neural network” Proc. IEEE Int.
Conf. on Neural Networks, pp. 1252-1257, 1993.

[ELDREDGE96] Eldredge, JG; Hutchings, BL: “Run-time configuration : A method for enhancing functional density of
SRAM based FPGAs”, Journal of VLSI Signal Processing, Vol. 12, No. 1, pp. 67-86, 1996.

[KwaANS2] Kwan, HK : “Simple Sigmoid-Like Activation Function Suitable for Digital Hardware
Implementation”, Electronics Letters, pp. 1379-1380, Vol. 28, No. 15, 1992.

[L.EE9O] Lee, CC : "Fuzzy Logic in Control Systems: Fuzzy Logic Controller - part 1 and 11", IEEE Trans SMC,
pp 404-435, Vol.20, N0.2,1990.

[MANZOUL9S] Manzoul A; Jayabharathi, D : “FPGA for fuzzy controllers”, IEEE Trans. SMC, pp. 213-216, Vol. 25
No 1, Jan.1995.

[SALAPURA9S] Salapura, V; Hamann, V : “Prototyping fuzzy controllers using VHDL and FPGA technology”,
International ICSC Symposium on Fuzzy Logic, Zurich, Switzerland, May 1995.

[SUGENOS8S] Sugeno, M; Kang, GT: “Structure identification of fuzzy model”, Fuzzy Sets and Systems, Vol. 28, pp.

15-33, 1988.
[WATANABE90] Watanabe, H; Detloff, WD; Yount, KE “A VLSI Fuzzy Logic Controller with Reconfigurable,
Cascadable Architecture”, IEEE Journal of Solid State Circuits, pp. 376-382, Vol.25, No.2, April 1990.
[YAMAKAWA93] Yamakawa, T : “A Fuzzy Inference Engine in non-linear analog mode and its application to a Fuzzy
Logic Control”, IEEE Trans. on Neural Networks, pp. 496-522, Vol. 4, No. 3, May 1993.

© 1997 The Institution of Electrical Engineers.

Printed and published by the IEE, Savoy Place, London WC2R 0BL, UK. 1/4

