Density Enhancement of a Neural Network Using FPGAs and
Run-Time Reconfiguration

James G. Eldredge and Brad L. Hutchings
Dept. of Electrical and Computer Eng.
Brigham Young University
Provo, UT 84602
Tel: (801) 378-2667
Email: hutch@ee.byu.edu

Abstract

Run-time reconfiguration is a way of more fully ex-
ploiting the flexibility of reconfigurable FPGAs. The
Run-Time Reconfiguration Artificial Neural Network
(RRANN) uses run-time reconfiguration to increase
the hardware density of FPGAs. The RRANN archi-
tecture also allows large amounts of parallelism to be
used and is very scalable. RRANN divides the back-
propagation algorithm into three sequentially executed
stages and configures the FPGAs to execute only one
stage at a time. The FPGAs are reconfigured as part
of normal execution in order to change stages.

Using reconfigurability in this way increases the
number of hardware neurons a single Xilint XC3090
can implement by 500%. Performance is effected by
reconfiguration overhead, but this overhead becomes
insignificant in large networks. This overhead is made
even more insignificant with improved configuration
methods. Run-time reconfiguration is a flexible real-
ization of the time/space trade-off. The RRANN ar-
chitecture has been designed and built using commer-
cially available hardware, and its performance has been
measured.

1 Introduction

In many cases, reconfigurable Field Programmable
Gate Arrays (FPGAs) are used as an easy way to pro-
totype digital logic circuits and as a way to achieve
cheap, low-volume, custom VLSI. The ease with which
a designer can develop a circuit and then configure an
FPGA to implement that circuit is the primary reason.
This flexibility comes at the cost of decreased perfor-
mance due to the overhead involved in making a de-
vice fully programmable. Because of this overhead, an
FPGA provides less functionality per unit area of sili-
con and longer communication delay times than gate-
array or full-custom implementations [1]. In a conven-
tional static design (one where the FPGA’s configura-
tion does not change) this flexibility is wasted, while
its overhead remains.

The efficient use of FPGAs beyond prototyping and
low-volume production requires that the FPGA’s flex-
ibility be used directly. One way of exploiting this flex-
ibility is through run-time reconfiguration. Run-time
reconfiguration divides an algorithm into sequentially
executed stages; at run-time, only one stage is con-
figured on the FPGAs at a time. When one stage
completes, the FPGAs are reconfigured with the next

0-8186-5490-2/94 $03.00 © 1994 IEEE

180

stage. This process of “configure and execute” is re-
peated until the algorithm has completed its task. Be-
cause only one stage of the algorithm is actually using
hardware at any given time, there are more hardware
resources available for use by each stage. These addi-
tional hardware resources can be used to improve the
performance of the active stage.

This paper describes the Run-Time Reconfigura-
tion Artificial Neural Network (RRANN). RRANN
uses run-time reconfiguration to increase the number
of hardware neurons implemented on a single Xilinx
XC3090. It does this by dividing the backpropagation
algorithm into three stages, feed-forward, backprop-
agation, and update and configuring the FPGAs for
only one stage at a time. Because of run-time recon-
figuration, RRANN was able to increase the number
of available hardware neurons by 500% per FPGA.

As the RRANN architecture uses the backpropa-
gation algorithm for learning, we begin by describing
the basics of the backpropagation algorithm for neu-
ral networks. Then, the RRANN architecture is pre-
sented and explained in some detail. Next, the perfor-
mance of the RRANN architecture is given, and then
some conclusions are made about the project.

2 The Backpropagation Algorithm
The backpropagation learning algorithm [2] pro-
vides a way to train a multilayered feed-forward neural
network such as the one shown in Figure 1.
It begins by feeding input values forward through
the network according to (1) and (2).

net; = ZOjoi Vi: iEB,
jeA

1)

where A is the set of all neurons in a layer, B is the
set of all neurons in the next layer, O; is the output
(or activation) for neuron j, and Wj; is the weight
assigned to the connection between neurons j and i.
Equation (1) takes the output values (or activations)
from a layer and feeds them forward to the next layer
through weights. This operation is performed for each
neuron in the next layer producing a net value for it.
The net value is the weighted sum of all the activations
of neurons in the previous layer, and each neuron’s net
value is then applied to (2), known as the activation

Tnput
Layer

Hidden
Layer

Output
Layer

Figure 1: A Multilayer Feed-Forward Neural Network.

function, to produce that neuron’s activation.

1

O; = f(net;) = ppp—

(2

After all neurons in the network have an activation
value associated with them for a given input pattern,
the backpropagation algorithm continues by finding
errors for every non-input neuron. This process begins
by finding the error for the neurons on the output layer
according to (3).

61' = f’(neti)(Ti - Oz) Vi:ie C, (3)
where C is the set of all output neurons, T; is the
target output for neuron ¢, f’() is the first derivative of
(2), and §; is the error for neuron i. The errors found
for the output neurons are then propagated back to
the previous layer so that errors can be assigned to

neurons contained in hidden layers. This calculation
is governed by (4).

8; = f'(net;) ZEjW,-j Vi:ieD,
jeE

(4)

where D is the set of all neurons in a non-input layer
and E is the set of all neurons in the next layer. This
calculation is repeated for every hidden layer in the
network.

After every non-input neuron has an activation and
error associated with it, the network’s weights can be
updated. First, the amount by which each weight
should be changed is found by calculating (5).

AW;; = Ci06; Vi,j: i€A, jeB, (5)
where Cj, known as learning rate, is a constant con-
trolling the size of weight changes, and AW;; is the
weight change between neuron i and j. The weight is
changed by evaluating (6).

Wijep1 = Wij, + AWy (6)

181

Misc. Data Bus

Control Bus
R K R
Host Global A Neural Al eoe® Neural A
Controller M Processor M| Processor M
Broadcast Bus

Error Bus

Figure 2: The General RRANN Architecture.

3 The RRANN Architecture

The RRANN architecture divides the backpropaga-
tion algorithm into the sequential execution of three
stages known as feed-forward, backpropagation, and
update. The feed-forward stage is responsible for tak-
ing input patterns and propagating them through the
network assigning an activation (output) to every neu-
ron according to Equations (1) and (2). The backprop-
agation stage (expressed by Equations (3) and (4))
finds the output errors and propagates them backward
through the network in order to find errors for neurons
contained in hidden layers. After every non-input neu-
ron has been assigned an error value, the update stage
(Equations (5) and (6)) begins operation. The update
stage uses activation and error values found by the
previous two stages to compute the amount by which
weights should be changed and updates all weights
with these changes. The completion of the update
stage marks the end of the evaluation of one training
pattern. This process is then repeated for all training
patterns until the network is sufficiently trained.

RRANN contains a global controller occupying one
FPGA and many neural processors occupying the bal-
ance of the available FPGAs (Figure 2). The global
controller is mainly responsible for sequencing the ex-
ecution of local hardware subroutines on the neural
processors and for supplying key data to the neural
processors (such as input patterns). Each neural pro-
cessor contains six hardware neurons and local hard-
ware subroutines implemented with state machines.
The neural processors are responsible for performing
all computations needed for the backpropagation al-
gorithm. Each neural processor also has a local RAM
associated with it. This RAM is used to store weight
and target output data and as a scratch pad to buffer
net and error values.

In order to use hardware efficiently, RRANN uti-
lizes bit-serial hardware to do mathematical compu-
tations. Also, as with other projects [3, 4], RRANN
uses look-up tables to implement the activation func-
tion (Equation (2)) and its derivative.

3.1 The Feed-Forward Stage

The feed-forward stage computes Equations (1) and
(2), and the feed-forward neural processor, shown in
Figure 3, contains the hardware for these computa-
tions. The feed-forward neural processor contains six
hardware neurons that compute the activation-weight
(O-W) products and accumulate these products. The

Data toffrom Broadcast
RAM Bus
Data Bus

Hardware

Newron ~ e€——
Sl 1 [~

| { | netBus | Activation
Function | Neursl Output Activations
Hardware
Neuron feE—t—f

Bus
Cycle Counter
Hardware Counter | D% Error Control
Neuron ~ MeE=—{—
[3 >
EsrCon State Machine

Hardware Neural I
]
-

Neuron

Address Control

Herdware
Neuron
[5 =1] [
Hardware SynCon State Machine ‘*
e
2]

Neuron

Address Control

Address Generation

Control from Address Output Pattem
Global Controller 10 RAM Offset from
Global Controller

Figure 3: The Feed-Forward Neural Processor.

neural selector decides which hardware neuron and
neural processor is currently supplying activation data
to the broadcast bus. The block labeled activation
function in the figure produces Equation (2). It does
this by using a net value supplied by a hardware
neuron as an index into a look-up table. The cy-
cle counter is used by the state machines to sequence
events, and the address generation unit produces the
addresses needed to access the local RAM. The output
error generation unit finds the difference between tar-
get outputs and the network’s outputs. This is tech-
nically part of the backpropagation stage (Equation
(3)), but it is done here for convenience. Finally, the
SynCon and ErrCon state machines implement, sub-
routines that control the evaluation of the network
equations.

To begin the feed-forward stage, the global con-
troller broadcasts an input value to the neural proces-
sors. This broadcast is done over a time-multiplexed
bus one input value at a time [4]. As each input value
is placed on the bus, the neural processors read it and
do the appropriate weight multiplication for neurons
in the first hidden layer. After the multiplication is
complete, the product is accumulated with those from
previous input iterations (Equation (1)), and the next
input is broadcast over the bus. This method of inter-
connection allows for a large amount of parallelism
to occur as all hardware neurons perform a multi-
ply concurrently. It also allows for a large amount
of scalability because hardware neurons can be added
to the network by simply connecting them to the bus.
Also, each hardware neuron only requires one multi-
plier; this allows for the development of one generic
neuron that can be used with networks of arbitrary

182

size.

After the evaluation of the first hidden layer is com-
pleted, the neural processors become responsible for
broadcasting activation values to be used as inputs to
the next layer. Before the evaluation of another layer
begins, the hardware neurons buffer the net values cal-
culated for the first hidden layer. Then, each hardware
neuron in turn evaluates (2) for its buffered net value
and broadcasts the result over the broadcast bus to
all other hardware neurons including itself. This pro-
cess iterates as the hardware neurons evaluate (1) and
buffer the new net values as was done for the first
hidden layer.

If the network has four layers, the above process is
again repeated for the output layer. After the net val-
ues for the output layer have been found, they are used
to evaluate (2}, and the results are compared with the
input pattern’s target outputs (7;). These compare
operations (T; — O;) are computed in parallel, and the
differences are buffered for use by the backpropagation
stage.

3.2 The Backpropagation Stage

The backpropagation stage computes Equations (3)
and (4), and the backpropagation neural processor,
shown in Figure 4, contains the hardware to do these
computations. The hardware neurons find the error-
weight products (6 - W) during the evaluation of (4)
and also buffer error values. The input and output
sum blocks compute the summation of (4). The out-
put register provides an index (a net value) into the
activation function derivative look-up table, and the
activation function derivative look-up table supplies
f' to the multiplier. This multiplier finds (f' -)
to complete the computation of (4). This final prod-
uct is check for overflow and underflow by the over-
flow /underflow block. The neural selector determines
the hardware neuron and neural processor Equation
(4) is being computed for. The cycle counter aids the
state machines in sequencing operations, and the ad-
dress generation unit supplies addresses to the local
RAM. Two multiplexors are also used to direct data
to their proper locations. The GetErr, OutErr, and
ErrComp state machines control this hardware to cor-
rectly calculate (3) and (4).

The backpropagation stage begins by finding the
errors for the output layer using the differences found
during the feed-forward stage according to (3). This
operation can be executed with a large degree of par-
allelism, is purely local, and, therefore, does not re-
quire any communication of data between hardware
neurons.

Erdogan and Hong [5] point out a stumbling block
to parallelism in the calculation of (4). This problem
occurs when error values are broadcast back through
the network in a similar manner as activation val-
ues during the feed-forward stage. The weight val-
ues needed for the multiplication after the broadcast
are not locally available to the hardware neuron that
needs it. Erdogan and Hong suggest weight value du-
plication as a possible solution. RRANN solves the
problem in a fundamentally different way that avoids
weight duplication and error broadcasting.

Figure 5: Computing Errors for Hidden Neurons.

RRANN completes the computation of Equation
(4) for each hidden neuron in the network (including
the summation) before beginning (4) for another hid-
den neuron. This operation is illustrated by Figure 5.
It begins as each output neuron calculates the error-
weight product (6-W) in parallel. Each neural proces-
sor then sums the products generated by its hardware
neurons, and this partial sum is then communicated to
the targeted neural processor. This target neural pro-
cessor receives these partial sums and completes (4) by
adding the partial sums together and then multiplying
by the appropriate activation derivative.

Computing Equation (4) in this manner achieves
the same level of parallel execution as the feed-forward
and update stages. This is an important advantage
that overcomes the problem of non-local weight dis-
tribution discussed by Erdogan and Hong [5] without
requiring weight duplication or broadcasting. How-
ever, a small amount of scalability is lost as each neu-

183

To

Learning To Broadcast
Rate Data Bus Bus
—
[t
Neuron
B
Neuron
2
Neuron (.
3
2 veuron e
4
b OWEr State Machine
Address To
o Local RAM
Neuran -
s
=3 ChgWt State Machine
Lo "o e Address Generation Unit

Figure 6: The Update Neural Processor.

ral processor requires its own line of communication.
As the number of neural processors grow, the number
of error communication lines grow. This increase in
communication lines also necessitates an increase in
adder circuitry for merging the partial sums. These
requirements are minimized, however, by the use of
bit-serial data representations. The communication
lines are only one bit wide, and bit-serial adders only
require one Xilinx Combinational Logic Block (CLB).

3.3 The Update Stage

The update stage computes Equations (5) and (6),
and the update neural processor, shown in Figure 6,
contains the hardware needed for these calculations.
The update hardware neurons compute (5) using er-
ror (6) values retrieved from local RAM, activation
(O) values supplied over the broadcast bus, and learn-
ing rate (C;) supplied by the global controller. After
finding the AWs, the update hardware neurons im-
mediately use these data to update the corresponding
weights. The output registers hold net data retrieved
from local RAM and supply these data as indexes into
the activation function look-up table. The neural se-
lector decides which neural processor supplies activa-
tion data to the broadcast bus and which output reg-
ister supplies input to the look-up table. The cycle
counter supplies sequencing information to the state
machines, and the address generation unit produces
addresses for the local RAM. The OutErr and ChgWt
state machines control the above hardware to achieve
the proper execution of (5) and (6).

The update stage begins in a similar manner to the
feed-forward stage with the global controller broad-
casting input values to the first hidden layer. The
hardware neurons then use the activation and error

values found by the first two stages to compute (5).
The AW produced is immediately used in the calcula-
tion of (6), and the new weight value is copied over the
old value. This process is repeated for every weight in
the hidden layer in a parallel fashion as each input
presents its value. Then RRANN begins changing the
weights between the first hidden layer and the output

in a three layer network) or the second hidden layer

in a four layer network). This is again repeated, in
the case of a four layer network, for the weights be-
tween the second hidden layer and the output layer.

The completion of the update stage marks the end

of the evaluation of one complete training pattern.
The three stages are repeated for each pattern in the
training set (one epoch), and new epochs are run until
the network is sufficiently trained.

3.4 Run-Time Reconfiguration Between

Stages
As was just explained, RRANN divides the back-
propagation algorithm into three sequentially exe-
cuted stages, and then configures only one of the
stages on the FPGAs at a time. This process is shown
in Figure 7 for one pass through all three stages.
Reconfigure & Begin New Pattern

Backpropagation Update
Circuit Module Circuit Module

Figure 7: RRANN’s Run-Time Reconfiguration.

A separate circuit module was developed for each
stage of execution. Each circuit module followed the
general architecture shown in Figure 2 consisting of
a global controller and many nearly identical neural
processors. As one circuit module finished (indicating
the completion of the corresponding stage), all FPGA
hardware was reconfigured with the next stage’s cir-
cuit module.

Feed-Forward
Circuit Module

4 Implementation and Evaluation

The RRANN architecture has been built and tested
using a commercially-available FPGA board (the X12
board, previously referred to as the SCA board) pro-
duced by National Technology Inc. The X12 board is
an ISA compatible expansion board that can be used
in a host IBM-compatible PC, and it can be populated
with up to 12 Xilinx XC3000 series FPGAs. The host
PC stores all configuration information for the FP-
GAs, monitors the progress of each stage of execution,
and supplies the appropriate configuration data to the
X12 board.

With the X12 board populated with Xilinx
XC3090s, reconfiguration time was measured at ap-
proximately 30 ms. Compare this to the minimum
reconfiguration time for an XC3090 of approximately
7 ms. The reason for the X12 board’s longer reconfig-
uration time is due to the host’s low bus bandwidth.
In a newer version of the X12 board, this problem is
solved through bus mastering and configuration data
caching. Therefore, the following analysis will assume
the 7 ms reconfiguration time.

184

Feed- Backprop- | Update
Forward agation
Neural 260 253 224
Processor
Global 97 62 98
Controller

Table 1: The CLB Requirements of Circuit Modules.

All circuitry was designed and simulated using
Mentor Graphics’ schematic capture software, and
these circuits were implemented on FPGAs using Xil-
inx’s XACT software. Using run-time reconfiguration,
six hardware neurons were implemented on each Xil-
inx XC3090 FPGA. The RRANN circuitry success-
fully simulated at 10 MHz and operated at 14 MHz.
With improved pipelining, especially between the neu-
ral processor and local RAM, it is estimated that the
circuitry could operate in excess of 40 MHz. Part uti-
lization (in Xilinx XC3000 CLBs) for the feed-forward,
backpropagation, and update stages are summarized
in Table 1. The RRANN circuitry was tested on neu-
ral networks requiring four XC3090s. For these net-
works, weight convergence was observed, and the net-
works made useful generalizations about the training
patterns presented them [6].

Feed-Forward,
Option
Bacl ation, & New Pattem
One kpropag: Begin New
Update

Circuit Module

Reconfigure

Option
Reconfigure
Two Feed-Forward &)
Backpropagation
Update Circuit Module
Circuit Module
. Reconfigure & Begin New Patiern
Option gure ® Begn
Three Feed-Forward | REOMBUE] Bacipropagation | RecoRfigure Update
Circuit Modute Circuit Module Circuit Module

Figure 8: Other Run-Time Reconfiguration Options.

For comparison, two other options for implementing
the RRANN architecture have been investigated. The
first option combines all three stages of execution into
the same circuit module, and this circuit module is
then configured onto the FPGAs. Reconfiguration is
not required for this option as all stages are present
in the one configuration. The second option combines
the feed-forward and update stages into one circuit
module and the backpropagation stage into another.
Reconfiguration is needed after the completion of the
feed-forward and backpropagation stages but not after
the update stage. These two options have been studied
theoretically, and no hardware has been developed for

them. The design explained in the previous section
is referred to as option three in the proceeding text.
Figure 8 shows these additional two options compared
with option three (Figure 7). Again, this third option
was implemented and tested using the X12 board and
XC3090 FPGAs.

Run-time reconfiguration improves hardware uti-
lization allowing more hardware neurons to be im-
plemented per FPGA. It is estimated that one hard-
ware neuron per FPGA is possible for option one, and
four hardware neurons per FPGA for option two. Six
hardware neurons per FPGA were attained for option
three, yielding a 500% increase in hardware neuron
densities over option one. This increase in hardware
neuron density is made possible because inactive cir-
cuitry is not using FPGA resources. As an example
of this, consider the input sum, output sum, and acti-
vation derivative blocks of the backpropagation stage
(Figure 4). The feed-forward and update stages do not
need this circuitry, and, through run-time reconfigura-
tion, they do not implement it. The FPGA resources
freed in this example are then used to implement more
hardware neurons.

The cost of this improved utilization is the time it
takes to reconfigure the FPGAs with a different cir-
cuit module. As stated previously, option one requires
no FPGA reconfigurations adding 0 ms to overall exe-
cution time. Option two requires two reconfigurations
adding 14 ms per pass to execution time. Option three
requires three reconfigurations adding 21 ms per pass
to execution time. Execution time tgz for one pass
through all three stages of the RRANN architecture is
given by

tg =tc + g, (7)

where

_ (nx 148+ (1 —1) x 13 + 282)
fe

is the time spent doing computations, n is the number
of non-output neurons, [is the number of layers, f¢ is
the clock frequency (14 MHz), and tg is the reconfigu-
ration time for the given option. The reconfiguration
time tp remains constant for each option regardless
of the network’s size. However, computation time to
grows linearly with n and, therefore, with the number
of FPGAs. For option one, tg is dominated only by t¢
because tg = 0 ms. However, tg for options two and
three is dominated by tg for small numbers of FPGAs.
As the number of FPGAs is increased, t¢ begins being
more significant to tg. The reconfiguration overhead
is, therefore, more dominant for smaller networks.
The Performance of the RRANN architecture for
all three options is shown in Figures 9 and 10. Fig-
ure 9 shows how the total computational power of
the network, measured in weight updates per second
(WUPS), grows as a function of XC3090s used. Op-
tions two and three are clearly dominated by recon-
figuration overhead for small numbers of FPGAs. For
larger numbers (> 23) of FPGAs, computational time
begins to be more dominant, and run-time reconfig-
uration begins to pay off with better performance.

[20]

185

x10

s Peak Training Performance

Weight Updates Per Second

(] 10 50 60

2‘0 50 4‘0
Number of FPGAS (XC3090s)
Figure 9: RRANN’s Performance (14 MHz).

x10° Peak Training Performance

>

N

-]

23

Option 3

>

8]

Weight Updates Per Second Per FPGA
-~
» > @© =

o
[

L "
10 50 60

2

20 30 40
Number of FPGAs (XC3090s)

Figure 10: RRANN'’s Performance per XC3090 (14
MHz).

Figure 10 shows the computational power that each
XC3090 is providing as a function of the total num-
ber of XC3090s used. Option one reaches peak out-
put per FPGA of 94.6 x 103 WUPS relatively quickly.
Again because of reconfiguration overhead, options
two and three require larger networks before higher
performance is possible. The performance of each
FPGA continues to grow asymptotically for these two
options until reaching 378 x 103 WUPS for option two
and 568 x 102 WUPS for option three.

After the backpropagation algorithm completes op-
eration and the neural network has been sufficiently
trained, the network is then used to compute outputs
for new input patterns. This is known as operational
mode, and it requires the computation of Equations
(1) and (2) only. These equations are totally imple-
mented by the feed-forward stage, and thus, in oper-
ational mode, the backpropagation and update stages
can be totally discarded. Also, because only one stage
is used, no FPGA reconfigurations are needed. This
again emphasizes run-time reconfiguration’s main ad-
vantage: Only that hardware presently needed uses

8 Peak Operational Performance
25X 10
2
°
2
8
3
‘g 155 Option 3
a
Py
2
8
8 1
2
£
s
[$]
Option 2
05f
Option 1
o 10 50 60

20 30 40
Number of FPGAs (XC3090s)

Figure 11: RRANN’s Operational Performance (14
MHz).
4)(10° Peak Operational Performance
3.5F Option 3

N

st
Option 2

.5

°-5’//’m1

0 10

Connections Per Second Per FPGA
n

20 30 40
Number of FPGAs (XC3090s)

Figure 12: RRANN’s Operational Performance per
XC3090 (14 MHz).

valuable FPGA resources.

The operational mode performance is shown in Fig-
ures 11 and 12. This performance is measured in
connections per second (CPS), and the figures show
that option three is clearly better. This result is
not surprising because only the feed-forward stage is
needed, and reconfiguration overhead is eliminated.
Also, option three implements more neural processors
per XC3090 allowing it to do more neural computa-
tions.

In order to make run-time reconfiguration more
feasible, the significance of reconfiguration overhead
needs to be reduced. One way of doing this is by mak-
ing computation time more significant at a faster rate.
As previously noted, RRANN’s implementation of the
backpropagation algorithm causes computational time
tc to grow linearly with the number of hardware neu-
rons and, hence, FPGAs. If, for a different algorithm,
this rate of growth were n logn or n2, t¢ would dom-
inate tg much sooner.

Another way of decreasing the significance of re-
configuration overhead is by finding faster methods

186

for reconfiguring FPGAs (i.e. reducing tgp directly).
Using Xilinx parts as an example, the internal data
path used to load configuration data could be widened
from one to eight bits, and the maximum configura-
tion clock rate could be increased from 10 MHz to per-
haps 50 MHz. Negligible reconfiguration times could
be realized through an FPGA that is capable of stor-
ing multiple configurations. Configuration data for
several configurations would be loaded and stored on
the FPGA at the beginning of execution. The active
configuration could be selected by a few dedicated ex-
ternal pins, and, after its execution is complete, an-
other configuration could be activated by manipulat-
ing the select lines and waiting a few microseconds. Of
course, internal configuration memory is not free, and
an FPGA containing enough memory to hold four con-
figurations might otherwise be able to have four times
as many CLBs instead. This is the case with any
configuration improvement; the improvement proba-
bly increases the part’s programmability overhead and
reduces the part’s functionality. Issues such as these
should be studied in order to find out what improve-
ments can be made and the amount of additional over-
head they would create.

x10° Peak Training Performance

Mult. Conf. FPGA

°
2
=]
3 8
15}
5
o 8-Bit, 50 MHz
8 ¢ 4
]
2
2
£4
3 8-Bit, 10 MHz
b4

o

1-Bit, 10 MHz

5 10 15 20
Number of FPGAs (XC3090s)

Figure 13: Effect of Configuration Improvement on
Option Three Performance.

The performance results of these possible modifi-
cation are summarized in Figures 13, 14, and 15 for
option three. Figure 13 shows that the amount of com-
putational power increases at a much faster rate when
improved reconfiguration is used. Figure 14 shows
that the performance of each FPGA becomes signif-
icantly larger in smaller networks. Figure 15 shows
that reconfiguration times are not as dominant for
even small networks. Comparing Figures 13 and 14
to Figures 9 and 10 respectively, it can be seen that
reconfiguration improvements cause option three per-
formance to be superior for networks using as little
as three XC3090s. Note that in Figures 13, 14, and
15 all four configuration possibilities shown asymptot-
ically arrive at the same values in the limit (> 1000
XC3090s). It is no surprise that improved reconfigu-
ration time would increase the feasibility of run-time

X 10° Peak Training Performance

[

Muit. Conf. FPGA

a

8-8it, 50 MHz

N

8-Bit, 10 MHz

Weight Updates Per Second Per FPGA
©

1-Bit, 10 MHz

5 10 15 20
Number of FPGAs (XC3090s)

Figure 14: Effect of Configuration Improvement on
Option Three Performance per XC3090.

Reconfiguration Performance

90p

1-Bit, 10 MHz

@
S

70)

8-Bit, 10 MHz

8

8-Bit, 50 MHz

Percentage of Time Spent Reconfiguring
o
S

Mult. Conf. FPGA
2 4

8 10 12 14 16 18 20
Number of FPGAs (XC3090s)

Figure 15: Effect of Configuration Improvement on
Option Three’s Percentage of Time Spent Reconfigur-
ing.

reconfiguration.

5 Conclusion

The catalyst for this project was to find ways to use
the FPGA'’s flexibility beyond prototyping. The focus
was on exploiting reconfigurability—the biggest advan-
tage a reconfigurable FPGA has over other forms of
ASICs. Specifically, neural networks were used as an
application, and run-time reconfiguration was used to
improve neuron densities.

The Run-Time Reconfiguration Artificial Neural
Network is an original neural network architecture de-
signed and built by the authors to exploit the recon-
figurability of FPGAs. RRANN implements the back-
propagation algorithm by dividing it into three sepa-
rate stages of execution and executing one of these
stages at a time. FEach stage is implemented with
its own circuit module, and only one circuit module
is configured onto the FPGAs at a time. When one
stage completes, the FPGAs are reconfigured with the

187

next stage’s circuit module. Because circuitry from
inactive stages are not using FPGA resources, the ac-
tive stage’s circuitry has more resources available to it.
These extra resources are used to increase the number
of hardware neurons on each neural processor.

This increase in available FPGA resources comes
with the overhead of reconfiguration time (about 21
ms per pattern). This overhead dominates execution
time when small numbers of FPGAs are being used.
Two other options for implementing the backpropa-
gation algorithm have been investigated and used for
comparison. These other options require less reconfig-
uration overhead and achieve lower neuron densities.

Option three is able to implement 500% more hard-
ware neurons per FPGA compared to option one. Be-
cause the computation time of the RRANN architec-
ture increases linearly and reconfiguration time re-
mains constant, reconfiguration overhead becomes in-
creasingly less significant as the number of FPGAs
grows. In the limit (> 1000 FPGAs), this overhead
becomes insignificant, and the increased FPGA uti-
lization becomes dominant. Moreover, in the limit,
a given FPGA provides 500% better performance
(WUPS) with run-time reconfiguration. If better
methods for reconfiguring FPGAs were used, this bet-
ter performance would be possible for even small num-
bers of FPGAs.

Run-time reconfiguration is another realization of
the time/space trade-off common in computer engi-
neering. This trade-off normally allows increases in
performance at the cost of additional hardware or re-
ductions in hardware at the cost of degraded perfor-
mance. This trade-off applies to FPGAs and run-time
reconfiguration in a slightly different sense. When
more hardware is needed, the same space on an FPGA
can be reused many times through reconfiguring, but
doing so reduces the amount of time that the FPGA
can spend executing. For example, if ten XC3090s are
available, ten neurons per layer are the limit for op-
tion one. If more are needed, the same FPGAs can
be reused for different stages creating more space for
hardware neurons, but less time is available for com-
putation due to reconfiguration overhead.

This new dimension to the time/space trade-off pro-
vided by the reconfigurability of FPGAs is also flex-
ible. This trade-off does not have to be made at
manufacture-time, but can be made optimally at run-
time. For example, let’s say a neural network with
25 neurons per layer is needed, and seven XC3090s
are available. Option one is clearly insufficient pro-
viding only seven hardware neurons, and option three
leaves 17 hardware neurons unused. However, option
two provides 28 hardware neurons leaving only three
unused, and it requires less reconfiguration overhead
than option three. Since option two seems to be the
optimal choice for this particular network, the decision
to execute option two is made at run-time. After the
completion of this 25 neuron per layer network, sup-
pose a six neuron per layer network is needed. The
run-time decision to execute option one (being clearly
better for this job) can be made, and the same FPGA
hardware can be reused. The flexibility of the reconfig-
urable FPGA can therefore be exploited on a case-by-

case basis at run-time to achieve optimal performance.

References

(1]

(2]

(5]

N. H. E. Weste and K. Eshraghian, Principles of
CMOS VLSI Design, A Systems Perspective, 2nd ed.,
pp. 399-403, Reading, MA, Addison-Wesley Publish-
ing Co., 1993.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
"Learning Internal Representations by Error Propa-

gation,” in Parallel and Distributed Processing, Vol.
1, Cambridge, MA, MIT Press, 1986.

T. Watanabe, et. al., Neural Network Simulation on a
Massively Parallel Cellular Array Processor: AAP-2,
IEEE International Joint Conference on Neural Net-
works, 2:155-61, Washington DC, 1989.

D. Hammerstrom, A VLSI Architecture for High-
Performance, Low-Cost, On-chip Learning, IEEE In-
ternational Joint Conference on Neural Networks,
2:537-544, San Diego CA, 1990.

S. S. Erdogan and T. H. Hong, Massively Paral-
lel Computation of Back-Propagation Algorithm Us-
ing The Reconfigurable Machine, World Congress on
Neural Networks ’98, 4:861-4, Portland OR, 1993.

J. Eldredge, FPGA Density Enhancement of a Neural
Network Through Run-Time Reconfiguration, Mas-
ters Thesis, Dept. Electrical and Computer Engineer-
ing, Brigham Young University, Dec. 1993.

188

