an ki

(2n,m!)2m4
ways, so the remaining bits can be assigned in

gk \7
( (21L7m!)2"’ —k )

ways. Thus the number of regular s-boxes in which the first & out-
put co-ordinates are linear functions is given by

e 2% k=1
R(n,m, k) = 2* o IJe-29
’ 3 - (2,1,,”!)2"-—»
=0

Consider the function @: Zy — Z, constructed from every
nonzero linear combination of the output co-ordinates of f.
Counting the number of nonlinear regular s-boxes corresponds to
counting the number of functions @ with no affine co-ordinates.

The number of ways we can choose ! co-ordinates of @ such
that & of them are linearly independent is equivalent to the
number of 7 x m binary matrices (without taking the order of rows
into account, i.e. two matrices with the same rows but in different
orders are counted once) with nonzero distinct rows which have
rank k. This is given by [4, 5]

pnin=(), S (),

=0
where

(m) _ H(Q”L—T)
k/, tol
et -2
i=0
It is clear that for every k linearly independent co-ordinates of ®,
denoted by (i, 0i,,...,0i,), we can find (m — k) co-ordinates of @,
denoted by (0i.,, $i;.s...,07,), such that

{($iy biz -« 00, Y =Alf1 fo .o . fu)

where 4 is an m x m invertible binary matrix and (f, £ .. .. f,)
denotes the output co-ordinates of f. This means that as f varies
over all the set of distinct regular s-boxes, (¢4, ¢i» .. .. ¢i,) scans
the whole set but in a different order. From the above argument,
it is clear that the number of ways of constructing certain k line-
arly independent co-ordinates of & from affine functions is also
given by R(n, m, k).

Using the inclusion-execlusion principle, the number of linear
regular s-boxes, i.e. regular s-boxes with the property that one or
more of the nonzero linear combinations of their output co-ordi-
nates are affine, is given by

2mM 1 min(l,m)
RL(z,m)= > (=1)"' 3" LI(m.lk) R(n,m,k).
=1 k=1

To express the above count as a fraction of the total number of
regular s-boxes, denoted by FRL(n, m), we divide by the total
number of n X m regular s-boxes
2™

W
To give a numerical example, for n = 6 and m = 4, which is the
size of DES s-boxes, FRL(6,4) = 2.46 x 10-'6, We can easily get an
upper bound for FRL(n, m) by noting that

RL(n,m) < (2™ - 1) R(n,m, 1)

n>m

and hence that

] 2(271 _ 1)(2m _ 1)(2n—1!)2 2511/2
FRL(n.m) < T =0 )

Conclusion: We have derived an exact expression for the number
of regular s-boxes with the property that one or more of the
nonzero linear combinations of their output co-ordinates are aff-
ine. From the above, it is clear that this fraction decreases dramat-
ically with the number of inputs.
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Reduced-complexity circuit for neural
networks

S.S. Watkins and P.M. Chau

Indexing terms: Neural networks, Reduced instruction set
computing

The Letter demonstrates that a 10bit reduced-complexity VLSI
circuit can be used in place of a 32 bit floating-point processor to
speed up some neural network applications, reducing circuit area
and power consumption by 88% with a negligible increase in
RMS error. Applications were executed on a radial basis function
neurocomputer using the reduced-complexity circuit implemented
with FPGA technology. One application produced better results
than had been previously obtained for a NASA data set using
either neural network or non-neural network approaches.

Introduction. Today’s hardware capabilities are limiting the devel-
opment of neural network research. Neural networks learn by
adjusting weights on input and internal signals by very smail incre-
ments until the network has converged on a solution that is satis-
factory for all training patterns, and this process can take days,
weeks or months on a modern workstation. A neural network
usually exhibits a significant amount of potential parallelism, and
hardware accelerators can reduce the learning time by orders of
magnitude by exploiting this parallelism. Many applications
require less than 32bits of floating-point precision [1], and this
fact can be used to reduce the cost of the accelerator circuits in
terms of area and power. For one application described below, the
use of a unique 10 bit reduced-complexity multiply/accumulate cir-
cuit resulted in an area and power saving of 88% over a full 32 bit
floating-point circuit, while the learning results as measured by
RMS error were within 0.03% of the 32 bit results.

Radial basis function neural networks: Qur research has focused on
implementing radial basis function (RBF) neural networks with
reduced-complexity VLSI circuits as a means to accelerate learning
while minimising costs in terms of area and power. The RBF net-
work uses a radial basis function (usually a Gaussian) as the trans-
fer function of a neuron rather than the traditional sigmoid
function. Radial basis functions have been used to solve mapping
and function estimation problems with positive results [2]. The
equations describing an RBF neuron’s output x; in terms of an
input vector and stored weights are:

2= (Cip— B)? (L

k
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7, = exp(—z;/w;} @
where C,, is the stored centre for the input element k of neuron j;
I, is element k of the input vector; w, is the width of the Gaussian
for neuron j.

We have implemented an RBF neurocomputer with the 10 bit
reduced-complexity circuit, a PC and software written in C. The
subtraction, squaring and summing of the input layer are per-
formed by the reduced-complexity circuit. The results of these
operations are passed to a lookup table to produce a Gaussian x,.
While the reduced-complexity circuit was applied to an RBF net-
work, it can also be easily applied to a back-propagation neural
network, since this type of network also requires the multiply/
accumulate operation.

Application results: Two applications have been executed on the
custom RBF neurocomputer with very positive resuits: (i) a
remote sensing application that has important implications for
both short-term and long-term climate modeling [3]; (i) a
Mackey-Glass time series estimation application [4]. The execution
of the remote sensing application produced better results than had
been previously obtained for the data set supplied by NASA. Fig.
1 shows the learning curves for the remote sensing application.
The Y-axis represents the RMS error of the network after X
passes through the training set, and is a measure of how well the
network is learning. The Figure shows that results using 10 bits of
precision are nearly indistinguishable from results using 32 bits.
The most important measure of the quality of the reduced-com-
plexity approach is how well the network does on the test patterns
after it has been trained. On the remote sensing test patterns, the
10bit reduced-complexity approach produced results that are
within 0.03% of the 32bit results.

last result register

muitiply/accumulate
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b [ .
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Fig. 1 Comparison of learning curves for 8, 10 and 32 bit precision
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Fig. 2 Block diagram of reduced-complexity multiply/accumulate circuit
(input layer for RBF network)

Reduced-complexity circuit: Fig. 2 shows the reduced-complexity
circuit. It consists of subtraction and multiplication operations
with 10bits of precision, and accumulation with 20 bits of preci-
sion. Two 20 bit-wide barrel shifters, a counter to represent an
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exponent and a small control block complete the circuit. The bar-
rel shifters and counter create a true floating-point capability. The
circuit scales better than O(MogN) in terms of time and area
(where N is the number of network inputs). The N term accounts
for time, because an additional cycle is required for each addi-
tional input. The logN term accounts for area. The area scales bet-
ter than logN because, as the number of inputs grows, the
additional bits needed to represent the sum are in the exponent
(i.e. storage area scales as log(logMV)).

Table 1: Comparison of different circuit implementations for RBF
network input layer

Mult./ Power
Processor Number of | Power .Cycle accum. | per ops.
transistors | [mW] time [ns]
ops. per ps| per ps
10 bit mult.
20 bit accum. 6860 103 20 50 2.1
custom CMOS
pxas et 1 50000 | s00 25 40 125
10 bit mult. 41400
40 bit accum. (180 375 40 25 15.0
FPGA CLB’s)
32 bit mult.
40 bit accum. 60000 892 20 S0 17.8
custom CMOS
Texas Inst.
TMS320C30 | > 100000 1000 40 25 40.0
floating-pt. DSP

Order is based on most efficient implementation in terms of power per
operation

Analysis of different implementations: The circuit was implemented
with an FPGA to demonstrate feasibility. Others have also imple-
mented neural network accelerators with SRAM FPGAs, but they
have not compared FPGAs with other approaches [5]. Table 1
shows the area (number of transistors) and power comparisons for
both custom and FPGA implementations of the circuit in order of
efficiency (as measured by power per operation). Also shown for
purposes of comparison are commercial fixed-point and floating-
point digital signal processing chips (DSPs). As can be seen from
the Table, the [0bit fully custom approach is the most efficient
and uses 88% less area and power than a 32bit fully custom
approach. The DSP approach is second. Because of the FPGA’s
static-RAM-based block structure, it cannot compete with either a
fully custom VLSI circuit or a fixed-point DSP in terms of area
and power consumption. A typical FPGA five-input logic block
uses 32 5bit static RAM cells, nine multiplexers and two registers.
The SRAM cells alone account for 160 transistors, enough to
implement 40 complementary two-input custom logic gates. In
contrast, only 32bits of DSP onboard memory are required to
represent the RBF network input layer (two 16bit words for the
subtraction and multiply/accumulate operations).

Table 2: Comparison of different RBF network accelerators

Number of | Mult/accum.

Accelerator system processors Zs:o]:ledr

(millions)
RBF network 50MHz custom array 64 3200
TI TMS320C50 40MHz fixed-pt, DSP 64 2560
RBF network 25MHz FPGA array 64 1600
TI TMS320C30 20MHz floating-pt. DSP 64 1600
Adaptive Solutions CNAPS-64 64 1280
HNC SNAP-64 64 302

Order is based on performance in terms of multiply/accumulate opera-
tions per second

System comparison results: Table 2 shows a performance compari-
son of systems using both the custom CMOS and FPGA reduced-
complexity circuit implementations (with 10 bits of multiply and
20 bits of accumulate precision) with two commercially available
neural network accelerators, the Adaptive Solutions CNAPS-64
and the Hecht-Nielsen SNAP-64, and with two DSP-based sys-
tems. Performance numbers for the commercial accelerators were
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obtained from product data sheets. If local memory weight storage
were used on the RBF networks, then the RBF network systems
could support the numbers shown in Table 2. As Table 2 shows,
the custom CMOS implementation is the clear winner, while the
fixed-point DSP system is second.

Conclusions: Low cost neural network accelerators can be created
using reduced-complexity VLSI circuits that greatly improve learn-
ing and pattern matching performance. These circuits provide the
benefit of using much less area and having lower power consump-
tion than complex 32 bit floating-point circuits, with negligible loss
in the quality of results.
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Electromagnetic scattering from cylindrical
arrays of infinitely long thin wires

R. Vescovo

Indexing terms: Electromagnetic wave scattering, Discrete Fourier
ransforms

Plane wave scattering by a cylindrical array of equally spaced
infinitely long perfectly conducting thin wires is examined. The
symmetry of the structure is exploited to derive a closed form
expression for the currents excited on the wires, using the concept
of circulant matrix and, alternatively, using a DFT (discrete
Fourier transform) approach.

Introduction: The electromagnetic behaviour of arrays of parallel
cylinders has been investigated by many workers [I — 4]. In this
Letter we consider N perfectly conducting infinitely long wires,
each of radius a, arranged around the z-axis of a Cartesian system
O(x,y,z) to form an equally spaced cylindrical array of radius R.
The plane containing the z-axis and the ith wire of the array forms
an angle ¢, with the xz-plane, where ¢, = o + 2 N1y, i =1, 2,
w N, and 0 < o < 27N The structure is illuminated by a plane
wave whose propagation vector k lies in the xz-plane and forms
an angle 6, (-7/2 < 8, < n/2) with the x-axis. The incident electric
field vector E' lies in the xz-plane. A time dependence exp(jof) is
assumed and suppressed throughout. Under the assumption that
the radius a of the wires is small compared to the wavelength (a
<< }), only the z-component of the electric field will excite cur-
rents on the wires. This component is given by

E% = Eycos by exp[—jk(z cosfy + zsinfy)] (1)
where k = 2nA"!. Furthermore, the current excited on the ith wire

has the form I',exp(—jkz sin 8), where I, is to be determined 1.
In the thin wire approximation, we neglect other current contribu-
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tions, which produce fields close to the wires. For this reason, we
assume that the distance between adjacent wires is at least several
wire radii [1].

An exact expression for the currents excited on the wires was
derived by Wilson [2], expanding the incident field in terms of
cylindrical waves, then determining the currents induced by each
cylindrical mode and summing over all modes. This procedure
leads to each current being expressed as an infinite sum. In the fol-
lowing, we express each current exactly as a finite sum, following
two different procedures.

Closed form expression for currents.: In cylindrical co-ordinates the
components £,* and E* of the electric field at a point P(p, ¢, z)
due to the currents J,/exp(~jk= sin €,) on the wires is given by [2]

N
E; =~ jEpsinfoexp(—jkzsin6o)y LH{Xkpacos) (2)

n=1

N
E; =—Eycosfpexp(—jkzsin )ZInHéQ)(kpnCos 6o) (3)

n=l

where
Low cos By
In,=1I—7"—2- 4
e ™)

In eqns. 2 and 3, p, is the distance between the nth wire and the
observation point, that is, p,> = p? + R2 — 2pRcos (¢, — ¢), while
Hy® and H|® are Hankel functions. In eqn. 4, y, is the permeabil-
ity of free space, and /, is a dimensionless current. The z-compo-
nent of the total electric field is E. = E/ + E. where E. and E are
given by eqns. 1 and 3, respectively. Imposing the condition of
vanishing £, at the centre of each wire, we obtain the following
linear system for the currents 1,

N
ZIHHAZ)(kpmncosﬂo) =b, m=12....N (5
n=1

where b,, = exp(—jkx,cos 8,) and x,, = R cos (ot + 27N '(m — 1)),
while p,,, is the distance between the axes of the wires m and n if m
# n, and p,, = a. Eqn. 5 can be expressed in the matrix form Ax =
b, where x = [I,, ..., I,]" (T denotes transposition), 4 = [a,,] with
Ay = H2(kp,, cos 8;), and b = [b,, ..., by)". We observe that a,,
depends on n—m, that is, a,, = c,,, Furthermore, ¢ = €p.n. There-
fore, the matrix A is circulant. Hence, the solution x = 4 b of the
above equation can be obtained using the formulas reported in [5]
for the inversion of a circulant matrix. After some manipulations
we obtain

N
L= I"exp(j27N "} (p— 1)(n - 1)) (6)
p=1
where
N
> _exp(—jkigcos o) exp(—j2rN “(p-1)(g—1))

7 -—19=1
IP=N =

D H{? (kpgicos o) exp(j2rN N (p—1)(g~1))

g=1
(1)
Eqgns. 6 and 7 are next derived following an alternative proce-
dure. We introduce the DFT-transformed currents 7', I, ... I,
related to Iy, I, ..., Iy by eqn. 6. Substituting into egn. 5. we
obtain

N
ETmpIP =bn m=12_...,N (8
p=1

where

N
Ty = ZHéQ)(kpmn cosflo) exp(j2r N~ (p— 1)(n — 1))

- (©)

1t is easy to verify that T, = T, exp(i2nN-'(p — 1)(m - 1)). Sub-
stituting the latter equation into eqn. 8 and expressing the coeffi-
cients b, in terms of the corresponding DFT-transformed
coefficients b', b, ..., b, we obtain, for each m = 1, 2, ey NG
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