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Abstract

This paper describes an ASIC approach of a
predictive current controller for VSI-PWM inverters
used in power systems. The new structure is based on
FPGA implementation of neural networks providing
high performance and compact hardware structure.
The operation principles, architecture, design and
implementation sirategy are presented alongside
with simulation results.

I. Introduction

The current control strategy plays the most
important role in current-controlled PWM inverter-
fed drive systems in which fast current response is
required. A high current derivative switching mode
must be chosen to produce the desired high speed
current response. The authors have developed and
adapted the switching strategy initially proposed by
Nabae, Ogasawara and Akagi in [1]. This paper
presents the novel control scheme based on neural
networks which able to optimally solve the quick
response problem for transient operation. When used
in conjunction with complex control strategies for
drive systems, it allows the elimination of the speed
and/or position transducer depending on the motor
type.

The use of the neural networks ensures a high
speed of operation and a compact implementation of
the novel switching strategy. The networks were
trained but constructed on simple logic and not
trained thereby avoiding the draw-backs of the
classical back-propagation training algorithm. The
analogue models were converted into digital
structures containing elementary logic gates.

II. The Structure of the Control System

The control system was designed as a high speed
digital ASIC. It comprises four main blocks
illustrated in Fig. 1. The load voltage observer and
the calculation block (‘Calc.”) are classical digital
structures whereas the PWM generator and the
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inductance estimator were implemented as digital
neural networks to obtain high speed of operation.

1. The State Space Observer
The principle of the state space observer relies on
the equation relating R, L and the load voltage,
which in terms of space vectors can be written as:

u(t)=Ri(t)+L

"f;t” re(t) o)

If the sampling process is taken into account then
the equation above becomes:

u(k) = Ri(k)+ ;L—[z(k) —i(k~1D]+e(k) @
S

The non-inductive load voitage is given by the
expression;
Vi(k)=Ri(k)+e(k) 3

Therefore the equation for the state space
observer can be written as:

Vi(k)=u(k)- Ti[i(k) —iyk-1] @
5
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Fig. 1 - The Novel Current Control Scheme
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IV. The Neural PWM Generator

The neural PWM generator produces the control
voltages for the transistors in the inverter so that the
inverter output veltage is adequate for maintaining
the required currents across the load. The voltage for
the next sample period will be calculated so that the
current at the end of the period will equal the desired
one:

ug (k+1) =Rz;(k)+§[zmk+1)—z(k)]+g(k) )
S

The PWM inverter contains 6 tramsistors
connected into 3 pairs. In each pair one transistor is
switched on and the other off. The state of each pair
can be described by one bit. This can be either 1 or 0
depending on which transistor is switched on. The
state of the inverter can be described by 3 bits. There
are only seven different output voltage space vectors
attached to the eight possible states of the inverter.
This is due to an identical result (short circuit)
corresponding to states (1,1,1,) and (0,0,0). The zero
output voltage (0,0,0) will not be discussed in this
paper. The space vector of the calculated output
voltage is not generally identical to any of these
seven vectors but the most appropriate one has to be
chosen, that is the one which generates the closest
resulting current to the desired one iz;(k+1) at the
end of the sampling period. Equation (5) may be
Tewritten as:

Rlige )00 |+ = g (k4 )= 00)] ©

Equation (6) demonstrates that for each sampling
period the vertex of the current space vector i(k) will
undergo a shift along the direction determined by the
vector [u(k+1)-V,(k)]. Therefore the strategy
proposed for finding the optimum output voltage
implies the minimization of the angle between the
vector  Rfig(k+1)-i(k)]=RAis and the vector
[unw(k+1)-Vi(k)] (Where uny 1s one of the possible
output voltages of the inverter). In other words their
scalar product is maximized.

The algorithm presented above is complex and
time consuming as it implies a series of
multiplications and divisions to calculate the
maximum of six different angles by algebraic and
trigonometric means. In order to avoid this problem
a four-layer feed-forward artificial neural network
(FFANN) was used. It was “constructed” on the base
of Voronoi diagrams as described in [2] rather than
trained by back propagation algorithm. Due to its

30

parallel processing capability the propagation delay
is only as long as the time needed for the signal to
pass through the layers of logic gates implementing
the FFANN (up to a few hundred nanoseconds).
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Fig. 2 - The architecture of the neural network

As illustrated in Fig. 2 the novel architecture is
defined by two tiers containing three interconnected
subnetworks. It cannot be entirely assimilated to a
classical feed-forward network because the 'Angle
Calculation Subnetwork' contains only one layer
breaking thereby the symmetry of the neural
structure. The first subnetwork determines the
position of the non-inductive voltage space vector
V(%) in the complex plane, the second determines
the direction along which the current space vector
has to move in the next sampling period following
the information provided by the direction space
vector Ai=ig (k+1)-i(k), while the third subnetwork
generates the three bits which describe one of the six
possible output voltages of the PWM inverter.

Fig. 3 - The partition of the interest area into
Voronoi cells
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The operation accuracy of the PWM controller
has been limited to an acceptable value in order to
keep the hardware implementation complexity to a
low level. As a result, the adopted implementation
solution is described as follows: the angle calculating
subnetwork will determine the angle designating the
desired movement direction with a precision of +5°
while the position calculating subnetwork divides the
complex plane into 54 triangular regions (Voronoi
cells) as shown in Fig. 3 and calculates in which of
these regions the vertex of V;(k) is. The decision as
to what control signal set to be provided to the
transistors in the PWM inverter will be taken as if
the vertex of V(%) is located in the center of the
corresponding cell. MATLAB simulations proved
that the small errors introduced by the imperfect
PWM controller do not significantly affect the
overall operation of the system.

V. The Inductance Estimator

If the inductance L in the equivalent circuit is
exactly known then it is always possible to predict
the direction of the space vector Ai=i(k+1)—i(k)
as for prediction purposes equation (4) can be
rewritten as:

vk = y_(ku)——TL—Az; @

s

As a result, the direction of 4i is the same with
the direction of V;jk)-uk+1). In case L is not
correctly known, the V;(k) is affected by the error
too, so that there will be a difference between the
predicted direction of 4i and the real one. Due to
reasons of simplicity, the inductance estimator only
operates when the PWM inverter voltage
corresponds to vertex (0,1,1) of the output voltage
hexagon (see Fig. 4), that is when u=-U,, (where Uy,
is the DC voltage at the inverter input). In this case
the estimator calculates the theoretical direction
vector (td) and compares it to the real direction of A4i.
If the corresponding angles & and S are not equal it
means that the assumed value of L has to be
corrected. The correction process is incremental:
every time « does not equal £ a small value AL is
added or subtracted from the current L value until
the right value is found.

Whether AL is added or subtracted depends both
on the relationship between angles « and £ and on
the last value of the inverter output voltage uk-1). A
simplified version of the estimator may avoid taking
into account the possibility when the imaginary part
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is zero. In this case the correction will only be
performed when the imaginary part of vector uk-1)
is not null. This simplified version is the one used in
this paper as it bas the advantage of a simpler
hardware implementation. There are two possible
cases to consider, depending on the sign of the
imaginary part of u(k-1):
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Fig. 4 - Graphical Representation of the induction
estimator operating principle

1) The imaginary part of u(k-1) is positive. If g
is greater than « (situation illustrated in Fig. 4) then
the imaginary part of }/; was underestimated. But V;
was calculated according to equation (7) and the
imaginary part of Ai was positive due to the sign of
the imaginary part of u(k-1). Therefore the value
considered for L/T, is too large and has to be
decreased. As a consequence AL will be subtracted
from the previous value of L. Conversely, if g is
smaller than « the same AL will be added to L.

2) The imaginary part of u(k-1) is negative.
The situation is reversed. All the signs are changed
and AL will be added to L for 3 greater than « and
subtracted for S less than a.

VI. Implementation Principles

The hardware structure corresponding to a neural
network is always intricate which makes it
impossible to be designed using the classical
schematic capture approach. Artificial Neural
Networks have already been implemented using field
programmable devices, taking advantage of their
potential for rapid prototyping [3]. and density
enhancement [4]. The design approach adopted here
minimises the model-to-hardware conversion



algorithm while still achieving compact hardware
implementation.

Thus a set of three C++ computer programs has
been developed in order to automatically generate a
VHDL file describing the digital implementation of
any neural network. The implementation is based on
elementary logic gates only. The input data file for
the first program contains the mathematical matrix
description of the network to be converted. It
gencrates a netlist description of the digital
architecture which is then optimized by the second
program to eliminate all the redundant structures.
The third program converts the netlist description
into a VHDL file.

The conversion from the matrix description to the
netlist takes place in several stages. In the first stage
the analogue bipolar inputs of the neural network are
digitized. The inputs of the neurons in the first layer
are split into 'n' other inputs which can only receive
two different signals: '+1' and '-1'. The values of the
new weights are calculated according to equation

8).
2kA1
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The bipolar neurons are transformed into their
unipolar counterparts in the second stage with '1' and
'0' only as input and output signals. All the negative
input weights are transformed into positive weights
by using inverter gates for the corresponding input
signals (see Fig. 5). Finally the input weights are
arranged in descending order. All the possible input
signal combinations which can trigger the neuron
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Fig. 5 - The Neural Network-Logic Gate Structure
Conversion Principle

output are systematically analyzed and a logic gate
structure which behave accordingly is generated.
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Some input weights may be larger than the threshold
level in which case each corresponding input signal
can separately trigger the neuron output (see Fig. 5).
Other input signals can only do so if they occur
simultaneously and the sum of the corresponding
weights surpasses the threshold value.

Fig. 6 illustrates the data flow for the conversion
process of the PWM generator neural network.
ANGLES, REGIONS and CTRL are the programs
which generate the matrix description of the neural
subnetworks corresponding to the user requirements
(mumber of Voronoi cells, precision in angle
calculation, number of bits for the digitized input
values). The others are the three universal
conversion programs described above.

File name]
wa.

File name: |
context dependent
A File name:
context dependent
File name:
context dependent

Fig. 6 - The Data Flow Diagram for the Conversion
Process of the Neural PWM Generator

VIL. Simulation Results and Conclusions

Digital simulations in VHDL proved the correct
operation of the new digital controller. Analogue
MATLAB simulations were performed as well to
check the performance of the new ASIC in
controlling a PWM inverter feeding an 11.1 kW
induction motor. The current controller proved able
to calculate the correct value of the inductance in the
equivalent circuit alongside with good results in
controlling the currents across the motor windings.
The stepwise inductance estimation incrementing
towards the final correct value is illustrated in Fig. 7.
This is reflected in the decreasing ripples of the
stator current vector represented as separate real and




imaginary parts in Fig. 8, thereby providing better
operation conditions for the drive system. The figure
also illustrates torque and speed variation in time
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Fig. 7 - Estimated induction value
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Fig. 8 - Induction motor behavior (transient
operation)

The adopted PWM current control strategy is
more complex but more flexible and accurate than
classical strategies wusing hysteresis current
controllers. It ensures a high speed current response
in transient operation. Microprocessor software
control with a high mathematical content has been
replaced by a fast ASIC implementation easily
allowing the genecration of optimal PWM signals

004
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with switching frequencies higher than 10 kHz. This
solution is a simple, reliable, compact and cost
effective alternative to other implementations. The
presented current control scheme is independent of
the load constants and is opened to further
developments as the ASIC calculates the V; space
vector containing information which can be input
into additional circuits implementing complex
control strategies for a large variety of power
systems.
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