Implementation of Simplified Multilayer Neural Networks
with On-chip Learning

Hiroomi Hikawa
Oita University
hikawa@csis.oita-u.ac.jp

ABSTRACT

In this paper, a new digital architecture of Multilayer Neural Network (MNN) with on-chip
learning is proposed. Proposed MNN is designed to have no multiply operation for efficient
hardware implementation. The absence of the multiplier makes the circuit size small, thus the
proposed MNN is suitable for massively parallel VLSI implementation.

To provide the on-chip learning ability, the back-propagation algorithm is modified to have
no multiply operation, and the algorithm is implemented with pulse-mode operation. Further,
a tri-state function is used as the activate function of neurons so that the multipliers in forward
path is replaced by a combination of shift and logical AND operations, which are easily realized

by digital circuits.

The proposed MNN is implemented on a field
To verify the feasibility of the proposed MNN in t

programmable gate array (FPGA) and tested.

he larger application, the MNN design is tested

using a pattern recognition problem by computer simulations.

1. Introduction

A salient feature of Artificial Neural Networks
(ANN) is their learning ability. Size and real-time
considerations show that on-chip learning is neces-
sary for a large range of applications. A flexible
digital design is preferred to more compact analog
or optical realizations. Another advantage of using
digital approach is that it can use state-of-the-art
VLSI and ULSI implementation techniques. One
of the major problems in the implementation of
ANN with digital architecture is the presence of
multipliers, which affects the circuit size and per-
formance. Neural networks without multiplier have
been proposed [1][2].

In this paper a multiplier-less Multilayer Neural
Network (MNN) with on-chip learning is proposed.
To provide the on-chip learning ability, the back-
propagation algorithm is modified to have no mul-
tiply operation and the algorithm is implemented
with pulse-mode operation. As a result, required
hardware for the on-chip learning is very simple
and small. To remove the multipliers in forward
path, the proposed MNN employs a tri-state func-
tion as the activation function of neurons. Use of
the tri-state function replaces the multiplier by a
combination of shift and logical AND operations,
which are easlly realized by digital circuits. A bit-
serial commutication and bit-serial arithmetic op-
erations are used to reduce the overall circuit size,
and communication links.

The proposed MNN is implemented on a field

0-7803-2768-3/95/$4.00 © 1995 IEEE

programmable gate array (FPGA), and its feasibil-
ity is tested by experiments and computer simula-
tions.

2. Multilayer Neural Network

MNN is one of the most widely used neural net-
work model. The MNN may consist of one or more
hidden layers of neurons between the input and the
output layers. Each neuron is connected to all neu-
rons of the two adjacent layers via synaptic weights.

The operation of the MNN is divided into two
phases, i.e., learning phase and retrieving phase.
During the learning phase, weights are adjusted
to perform a particular application. The learning
phase consists of forward path and backward path.
In the forward path, the output of the network is
calculated form input data, and the learning al-
gorithm is performed during the backward path.
In the retrieving phase, the same operation as the
forward path is performed.

2.1. Forward path

During the forward path, data from neurons of a
lower layer-is propagated forward to neurons of an
upper layer via feed-forward connection network.
Let oL’) denote the output of k-th neuron of the s-
th layer, and the layers are numbered from 0 to M y

1633

then the computation performed by each neuron is

N,-1
H,(c") = Z wg.)ogs_l) + 05:)

i=1

1)

o = J(H) (2)
where H, ,(:) is the weighted sum of the k-th neurons

of the s-th layer and wg-)

The output osf) of the neuron is obtained by com-

puting an activation function f(-) on the weighted
sum.

is the synaptic weight.

2.2. Backward path

Training algorithm is performed in the backward
path. The back-propagation algorithm (3] is the
most widely used training algorithm in MNN. Cri-
terion of the learning algorithm is to minimize the
least-square-error between the teacher value and
the actual output value. At the very beginning of
the learning phase, the forward path is executed
to obtain the ouput response of the input training
pattern. Then error between the teacher value and
the actual ouput value is propagated in backward,
and the error is used to update the weight values.
The back-propagation algorithm is expressed by,

tk—ogj) s=M

I N P
s=1,---M-1

6;::) — o,gcs)fl(H’(:)) s=1,---,M (4)

Awg-) 1]65:)05‘3_1) (5)
k=1,--N, j=1,--N;

3. Multilayer Neural Networks with-
out Multipliers
3.1. Forward path without multiplier

The proposed MNN uses a tri-state function g(-) as
the activation function:

0 < -TH
g(z)=< 1/2 - THLz<TH (6)
1 z>TH

As g(-) takes only three values the multiplica-
tion of wg})oga—l) in (1) is realized with a combi-
nation of shift and logical AND circuitry, which is
much simpler than the multiplier. Also the function
generator for g(-) can be easily implemented with
comparators. To reduce the communication links
between neurons and synapse unit in the MNN,
weighted neuron outputs are transferred through
serial communication links. Consequently, the cal-
culation of the weighted sum is carried out by bit-
serial adders.

1634

To Other neurons
From Other synapses

10
ol 0 2:1 MUX
s IL[™
JuUe
1 1L | +aD
(e} .
= .—Ct 021 :IUXIO _glet)
ke

MSB |

2 Up-down counter UP { Backward Path

+1 (w?) DWN { Forward Path
7]
N gl(Hil)) I
INeuron
unit ONE Parallel to serial Output
HALF converter

1

10
21 MUX O
s

Fig. 1: Synapse unit

Table: 1: Shift operation

l

| ois)] operation

1 one-clock delay
1/2 | no delay is applied
0 | transmission is disabled

The block diagram of the synapse unit that
weights the neuron output is depicted in Figure 1.
Lower portion of the figure is used in the forward
path. Weight value is in N-bit, fixed-point format,
and is stored in an up-down counter so that it can
be easily changed by applying pulses to the up-
down clock inputs. The content of the counter is
then converted to a bit-serial data and is sent to
the next layer from LSB first. The shift operation
is performed by changing the timing of the trans-
mission. For example, if of) is 1/2, corresponding
weight is sent in advance by one-clock period so
that the data is shifted to the right by one-bit,
which is equivalent to a division by two. The shift
operations are summarized in Table 1.

The block diagram of the modified neuron unit
which calculates the weighted sum is shown in
Fig. 2. In the neuron unit, all weighted outputs
of the neurons in the lower layer are summed up
by bit-serial adders, then the weighted sum is fed
to comparators which are used as function gener-

ators for g(-) and its derivative function g'(-) (See
Table 2).

3.2. Modified back-propagation algorithm

The back propagation model was not designed for
efficient hardware implementation. Therefore, the

k— ONE

I~ HALF
— ¢'(H{")

* Comparators 9(HM)

(9(),9'())

@ Bit-Serial Adder

Fig. 2: Neuron unit

Table: 2: Output of the neuron

JH) | JEHD)
ONE | HALF
H” < -TH 0 0 0
~-TH<H® <TH | 0 1 1
TH < H 1 0 0

algorithm is modified for effective hardware imple-
mentation. Especially, the modification is focused
on elimination of multipliers. The upper half of the
synapse unit depicted in Fig. 1 is the hardware im-
plementation of the modified back-propagation al-
gorithm, which operates during the backward path.

For the effective hardware implementation, the
error terms 0", and 868 in (3) are represented by
pulse signals. These signals are used to update the
up-down counters that contain the weight values.
The number of the pulse is proportional to the
absolute value of the error, and these pulses are
propagated through +§ line if the error is positive,
otherwise —§ line is used. When the absolute value
of the error is one, it is represented by two pulses,
0.5 is represented by a single pulse and no pulse
is present when the error is 0. As U,(cz) (error at
each output) takes only five different values, i.e.,
+1, £0.5 or 0, maximum number of error pulses
is two. To calculate w,(:-“) 6;"“) in (3), instead of
the actual weight value, the sign bit (MSB) of the
weight is multiplied with the error term 6§’+'l) 14].
As the sign bit takes two values (zero for positive,
one for negative), the multiplication is significantly
simplified. The circuit to perform the operation
is two multiplexers which exchange two signals +6
and —§ when the MSB of the weight is one.

Function f'(-) in (4) is the derivative of the acti-
vation function. Following function is used for f' “)
in the proposed MNN:

0 =< -TH

"(z) = 1 -TH<z<TH 7

g
0 z>TH

Table: 3: Function of the Up-down counter

INPUT OUTPUT

UP | DWN [£2 721 Qo ~QN_
X X 0 i} No change
T 0 0 1 Inc. by one

T 0 1 0 Inc. by two

0 1 0 1 Dec. by one

0 T 1 0 || Dec. by two

X X 1 1 No change

The multiplication cr,(:)g' (H,(:)) in (4) can be real-
ized by two AND gates because the function g'(-)
is a binary function. The multiplication, 6,(:) og."”
in (6), and updating of the weights are performed
as follows; each time the 6,(:) pulse is applied to
the up-down counter, the content of the counter is
increased or decreased by the size of 05."_1) X 2. Spe-
cial up-down counter whose increment and .decre-
ment size can be changed is devised to implement

this operation. The operation of the counter is de-
picted in Tab. 3,

4. Experiments and Simulations
4.1. Implementation on FPGA

The proposed MNN has been implemented on
a Field Programmable Gate Array (FPGA), and
tested. The configuration of the experiment is de-
picted in Fig. 3. The experimental MNN has two
input-node, three hidden-node, two output nodes,
and 17 connections. Training circuit that generates
the error signals as well as other necessary signals
for the MNN has been fabricated on another FPGA.
Third node in the input layer and fourth node in
the hidden layer always generate one output so that
the synaptic weights connected to neurons act as
the offset 4 of the neurons. In Fig. 4 the signals of
the MNN during the learning process is displayed.

Input (I, Iy)
—
Oo
So, —0g

0 Trainer

1
Fé1, 6 unit
)1’
0

XTI
clock,etc.

Fig. 3: Configuration of the experiment

1635

Backward Path

Backward Path

Backward Path Backward Path

l Forward Path Forward Path Forward Pw Forward Patm
I [i T |

CLOCK WWMWWMWWMWW
e L e i S —
10 ONE O ——————
ErloooNNEB 7 a\®) -
gg giiF T = @) G=To-0g=10-05=+05 a
+o n @ 5,=Ty-0,=00-00= 00 N
~bo - - Nl ®) G=To-0i=00-10=-10 s
i ©) @ &=T-0=10-05=+05 ||
OlHALF T = -
+6; -

6 L] _

Woo oo — e

Wor s X o3 »e
Woa TIE X TAT XX Y5 Y =)q

Fig. 4: Signals in the proposed MNN learning logic functions.

First, input data Iy, I; are given by the trainer unit,

and the forward path is processed. In the backward

path, the error signals are generated according to

the output (Og and Oy) resulted from the forward

path and teaching data (To and T1). The error tout
signals 6o (error at the output node 0) and é; (er- l;gu
ror at the output node 1) are generated in tern. 0.0
In the figure, a single pulse is generated for +do 88
because §; = +0.5, and no pulse is generated for 0.0
6, because &, = 0.0. These processes continue and (1)3

the error disappears eventually, as shown in Fig. 5.
The figure shows that the proposed MNN has been
successfully trained to perform two logical functions
(exclusive-OR and AND). The experimental MNN
has 12-bit fixed-point format for the weight value,
and TH is set to 256. The experimental network
runs with 25 MHz clock. With the 25 MHz clock
rate, It takes 1.16 ps (29 clocks) for forward cal-
culation, which is equivalent to the performance of
14.6 x 10° connections per second (CPS). For both
forward and backward operation, it requires 1.56
us (39 clocks), and delivers 10.9 x 10% connection
updates per second (CUP). Note that all neuron
units and syhapse units are connected in ‘fully par-
allel’ and all units work concurrently. Hence, these
performance figures are proportional to the size of
networks.

4.2. Performance analysis
simulations

with computer

To verify the feasibility of the proposed MNN in the
larger application, the MNN design has been tested
using a pattern recognition problem by computer
simulations. The same configuration of the MNN
that is tested by the experiments discussed in the
previous section, has been simulated by this simu-
lation program. The experimental results and the
simulation results are exactly the same. Thus this

1636

Fig. 6: Configuration of the Character Recognition Applica-
tion

simulation program is validated by the experiments
and its result is very reliable.

In the pattern recognition problem, the inputs of
the MNN are a seven by five array that is a pixel
representation of a single character, and the output
is 7-bit ASCII code. Fig. 6 shows the configuration
of the system. The MNN has been trained to recog-
nize 110 different character patterns corresponding
to 7-bit ASCII codes. Fig. 7 shows the learning
behavior of the proposed MNN. This figure shows
that the output error is steadily reduced and the
MNN is trained successfully. However, with fewer
hidden neurons (less than 30), it becomes difficult
for the tri-state MNN to be trained. The tri-state
MNN with hidden neurons less than 25 has con-
vergence problem while the neural networks with
sigmoid neurons doesn’t.

CLOCK
LOAD CLR
10 ONE

I1 ONE

TO ONE
O0 ONE
Q00 HALF
+6p

—&

T1 ONE

01 ONE
Ol HALF
+6

—6;

m

CLOCK w&mu_l“n L]
LOAD CLR : F\l n N a L p_non g i
I0 ONE A T e—— - @ To=0=10
HONE | g ! — | ® mn=0=00
pore o 9| & n-ome
O0HALF | _r——— | U/ r— | @ Ti=0=10
+go ! @ To=00=00
—%0
T1 ONE @ﬂr‘(‘;) ® | ® Ti=0,=00
01 ONB — @ T=00=10
| o 0
Ol HALF [__7 l)le LI - ﬁbl]
+6, Ty =01 =00
_61
Fig. 5: Signals after the learning
300 & T T T T

Number of hidden neurons : 20
250 M\ Number of hidden neurons : 30

FEEett

Number of hidden neurons : 40
k Number of hidden neurons : 50 |

200 By Number of hidden neurons : 60

4 \ Number of hidden neurons : 70
g8 150 4

5]
100 -
50 a
0 » AR 1
0 100 200 300 400 500

Number of Iterations

Fig. 7: Learning behavior of the proposed MNN in the pat-
tern recognition application

5. Conclusions

In this paper, hardware implementation of multi-
layer neural network with on-chip learning has been
discussed. The back-propagation algorithm is mod-
ified to have no multiplier and the algorithm was
implemented with pulse mode operation. Using the
tri-state function as the activating function, multi-
plications are replaced by much simpler operations,
such as shift and logical AND operations. The pro-
posed MNN was implemented on an FPGA, and the
feasibility of the proposed MNN and the modified
back-propagation were verified by both experiments
and computer simulations. Experimental circuit
runs with 25 MHz clock, and delivers 14.6 x 10¢ CPS

and 10.9 x 10° CUP. The behavior of the MNN used
in pattern recognition was studied by computer
simulations and the results show that the proposed
network can be used for larger applications.
Simple structure of the proposed MNN leads to
a massive parallel and flexible network architec-
ture, which is well suited for VLSI implementation.
The greatest potential of neural nets remains in
the high-speed processing that could be provided
through massively parallel VLSI implementations.

References

(1] B. A. White, M. I. Elmasry, ”The digi-
neocognitron: a digital neocognitron neural net-
work model for VLSI,” IEEE Trans. on Neural
Networks, Vol.3, pp.73-85, January 1992.

[2] M. Marchesi, G. Orlandi, F. Piazza and
A. Uncini, ”Fast Neural Networks Without
Multipliers,” IEEE Trans. on Neural Networks,
Vol.4, No.1, Jan. 1993.

[3] R. P. Lipmann, ”An introduction to comput-
ing with neural nets,” IEEE Acoustics, Speech,
and Signal Processing Magazine, pp. 4-22, April
1987.

(4] T. Baker and D. Hammerstrom, ”Characteriza-
tion of Artificial Neural Networks Algorithms,”
Proc. of 1989 ISCAS, pp.78-81, 1989.

1637

