A Fast-Multiplier Generator for FPGAs

Suthikshn Kumar, Kevin Forward and M. Palaniswami
Department of Electrical and Electronic Engineering,
The University of Melbourne,

Parkville, VIC-3052

Australia

Abstract

FPGA implementation of artificial neural networks
calls for multipliers of various word length. In this
paper, a new algorithm for generating vartable word
length multipliers for FPGA implementation is pre-
sented. The multipliers generated are based on a Booth
Encoded optimized Wallace tree architecture. Several
features of FPGA architecture are used to generate fast
and efficient multipliers. These multipliers are shown
to be 20% faster than existing FPGA multiplier imple-
mentations.

1 Introduction

Recently, several researchers have implemented ar-
tificial neural networks in Field Programmable Gate
Arrays(FPGA)[1],[2). These implementations have
achieved very good speeds through the use of finite
precision arithmetic. An extensive error analysis of fi-
nite precision arithmetic has been carried out by Holt
and Hwang[7]. Their results show that the number
of bits required to represent different parameters like
weights, biases, activation, inputs and outputs vary
depending on the algorithm. For example, while 13 to
16 bits are required for representing weights for back
propagation learning, 7 to 8 bits are sufficient for for-
ward retrieving. By taking these results into account
FPGA implementations can keep the system cost low
while achieving the best speeds possible. For imple-
menting finite precision hardware, one needs to design
arithmetic units such as adders and multipliers of vari-
ous word lengths. The recent introduction of X-BLOX
design tools[4] is a step in this direction. X-BLOX de-
sign tools synthesize efficient adders, comparators, ac-
cumulators etc. However X-BLOX design tools do not
generate multipliers. In order to speedup the process
of multiplier design, XGEN, a tool written in C++,
has been. developed. XGEN is a multipher generator

1063-9667/95 $4.00 © 1995 IEEE

53

and differs from other multiplier generators[9], in that
it is particularly developed for FPGA implementation.
It takes advantage of XC4000 Xilinx FPGA’s internal
architecture to generate fast and compact multipliers.
Several multipliers have been generated using XGEN
and extensive simulations have been carried out to test
them. The results show that the multipliers gener-
ated are 20% faster than implementations reported in
literature[10] for word lengths upto 16-bits. This im-
proved performance is achieved at the cost of higher
number of programmable logic gates compared to [10].

The structure of this paper is as follows : In sec-
tion 2, a brief overview of FPGA architecture is given.
In section 3, a brief discussion about Booth encoded
Wallace tree multipliers is given. In section 4, the mul-
tiplier generator XGEN .is described along with the
simulation results. In section 5, conclusions of using
XGEN are presented.

2 FPGA Architecture

FPGA’s store their configuration data in SRAM.
Hence these devices can be re-configured to change
the logic function while they are embedded in the
system. Hardware can be changed as easily as soft-
ware. XC4000 series is the third generation FPGA’s
introduced by Xilinx[3]. It supports system clock
rates of 40 to 50 MHz. The devices in XC4000 se-
ries have programmable logic densities of up to 20,000
gates per chip. These FPGA’s comprise of three
kinds of configurable basic blocks i.e., configurable
logic blocks(CLB’s), input/output blocks(IOBs) and
Switch matrix interconnections (ICNs). Figure 2.1
shows the block diagram of an FPGA. The CLBs pro-
vide functional elements for constructing the user’s
logic. The I0Bs provide the interface between the
package pins and internal signal lines. The ICNs pro-
vide routing paths to connect the inputs and outputs
of the CLBs and I0Bs onto the appropriate networks.

8th International Conference on VLSI Design — January 1995

Customized configuration is established by program-
ming internal RAM cells that determine the logic func-
tions and interconnections implemented in the FPGA.

Each CLB of the XC4000 series FPGA has two 4-
mput function generators, a 3-input function genera-
tor and a pair of flip flops. The function generators
can implement arbitrarily defined Boolean functions of
their four inputs. Each CLB also includes high speed
carry logic that can be activated by configuration. The
two 4-input function generators can be configured as
a 2-bit adder with built in hidden carry that can be
expanded to any length. The fast-carry logic makes
the XC4000 FPGA’s suitable for implementing high
speed arithmetic units.

I0B | | 108 IOB I0B
I,) i,]
CLB J CLB | CLB] cLB ||| 10B
? A o ~<— Switch Matrix
10B CLB 1 CLB I CLB J CLB Interconnect
:
0B IOB I0B 10B

Figure 2.1 FPGA Internal Architecture

3 Multiplier Architecture

Booth, proposed a method for multiplying two
signed 2’s complement numbers{5]. His method was
to use radix 2 recoding of the multiplier. In order to
improve the speed of the multipliers higher radix re-
coding have been proposed[6]. The block diagram of
a Booth Encoded Wallace Tree multiplier is shown
in figure 3.1. In the current work radix 4 recod-
ing(Modified Booth encoding) of the multiplier has
been used. Modified Booth encoding ensures that,
only N/2 partial products are generated for an N-bit
by M-bit multiplier. These N/2 partial products are
added at the Wallace tree.

The multiplier X and multiplicand Y are N and
M bits wide respectively. There are N/2 3-bit Booth
encoders each taking 3 bits of X and generating control
signals. The number of bits inspected is 3 and each
cycle will eliminate 2 bits. However there is a flaw in
this algorithm requiring a divide-by-2 correction cycle
for even number bit length multipliers(8§].

54

MULTIPLIER

(M bits) —lj
(M+N bits)
X
(N bits)

Figure 3.1 Multiplier Architecture

Ardekani[9] has proposed a method for sign exten-
sion prevention. When adding partial products, P;’s,
the P;jyith partial product is placed two bits to the
left of the P;th partial product. All P;’s should be
sign extended to the MN binary position. In the case
of Wallace tree adders, since the partial products are
added in parallel, sign extension becomes very costly.

We use the multiplier bits directly to generate par-
tial products. This is carried out by using 5-input
lookup table which can be implemented in one CLB.
Each of these look-up tables will take in 3 inputs from
multiplier X and 2 inputs from multiplicand Y and
generate one bit of a partial product. To take the 2’s
complement of the multiplicand Y, a 1 is added to its
complement. This is done in the Wallace tree. Instead
of adding final carry bits and sum bits of the Wallace
tree using a carry select adder, we used a simple rip-
ple carry adder implemented in the FPGA by using
dedicated carry logic. The dedicated carry adders are
more suited to FPGA architecture. The main reason
for using the Wallace tree for partial product summa-
tion is speed advantage which it provides. Another
advantage is that, the multiplier can be easily con-
verted into a multiplier accumulator.

4 XGEN: Multiplier Generator

XGEN is a C++ program written to generate fast
and compact multipliers for FPGA implementation.
XGEN is a hierarchical netlist generator. It gener-
ates a netlist for the Cadence CAD schematic capture
tool, Concept. The different signals and logic blocks
are assigned appropriate property values in order to
utilize the FPGA specific resources. XGEN uses the
LCA4K library, the X-BLOX library and some basic
blocks created by us. It is organized into several func-
tions which generate netlists for each block. These are

a Booth encoder, a Partial Product generator, a Wal-
lace tree, a correction block and and hence the overall
multiplier. The netlist generation is fully automated.
The input to XGEN is the number of bits, N and M.

As the program generates a hierarchical netlist, dif-
ferent components can be independently tested and
used. The generated netlist file is converted to XNF
format by using proprietary Xilinx software tools. An
LCA file for simulation of the multiplier is obtained by
using the Xilinx placement, partition and routing tools
and the X-BLOX synthesis tools. Cadence’s Rapid-
Sim tool has been used for simulation of the multi-
plier. In [9], an algorithm for generating an optimized
Wallace-tree has been proposed. To make use of the
dedicated carry logic, an improved algorithm is used in
the present work. The dedicated carry signal cannot
be switched to other interconnects without introduc-
ing considerable delay. Also, these signals have been
routed among adjacent CLBs along columns of CLBs
except at the edges of FPGA where the connections
run along the chip edge. Hence the dedicated carry
signals should be treated differently from other bits.
In the following algorithm, the delays of final sum bits
from the Wallace-tree are optimized by connecting the
incoming partial product bits and intermediate sum
bits in the following way. The bits which arrive at
the Wallace tree early, are added first. These bits
are determined by sorting the list of bits according to
their delays. The X-BLOX tool is used for synthesiz-
ing adders.

/* LP; list = list of all partial product bits to ith col-
umn of Wallace-tree */

/¥ Npi= Number of bits input to ith column of
Wallace-tree */

i=1

while (j > 0) {

J=0k=0;
for(i=0;i<(N+M-2);i++) {

k++;
switch(Ny;) {

case 0’ : break ;

case ’L’ : if(j == 0){ label the bit of LP;
as oulput ;
remove this bit from LP; ; }
break;

default : sort LP; according to delays of
each bit ;
label top two bits from LP; as inpuls to
adder ;

55

remove these two bits from LP; ;
append sum bit to LP; after computing

its delay ;
J++ ,m=k
break ;

}
synthesize j bit adder using X-BLOX tools ;

append carry-out bit to LP,y list;

Initially the delays of all the partial product bits
entering the Wallace tree are assumed to be equal and
the netlist is generated. The implementation is then
simulated to obtain the delays of all the partial prod-
uct bits. These delays are then fed to XGEN to gener-
ate the final netlist of the multiplier implementation.
This netlist for the Wallace-tree is thus optimized.

The delay of an N-bit adder which uses dedicated
carry logic, is given by[3] to be (8.5 + 0.75N)ns.
This formula is valid for devices with speed grade -
5. Since the addition of the partial products take
place in parallel the delay of the Wallace tree is pro-
portional to [log, N]. Hence, the delay of the Wal-
lace tree portion of the multiplier is approximately
([logy N1(8.5 + 0.75(M + N)))ns. Added to this fig-
ure is the delay of generating the Partial Products,
Booth encoding and interconnect delays. The 5-input
function generator is used for generating one bit of
Partial Product. The delay of 5-input function gen-
erator is 5ns[3]. Assuming 5ns interconnect delay, the
delay of the N-bit by M-bit multiplier generated by
XGEN is approximately given by

tma ~ (10 + [logy N1(8.5 + 0.75(M + N)))ns.

Table 4.1

Multiplier Util Delay(ns)
8-bit (%) | Calc | Measured
XGEN+XBLOX | 20 | 715 80.3
XGEN 23 120.7
Lou94 17 102

An 8-bit by 8-bit multiplier was generated using
XGEN and its delay was measured for XC4010PG191-
5 implementation by using the Xdelay program which
is a part of the Xilinx development tools. The mul-
tiplier speeds are shown in table 4.1. The multiplier
generated by XGEN is 20% faster than the multiplier

implementation reported in literature[10]. It is ob-
served that upto 16 bits, the new multipliers outper-
form the multiplier implementation reported in [10],
which uses a multiplier architecture called Linear Se-
quential Arrays(LSA). This is achieved at the cost of
increased number of CLBs as indicated by the utiliza-
tion factor.

250 T T T T T

(1) XGEN: Without X-BLOX
(2} [Louda] :
(3) XGEN: With X-BLOX

Delay(ns)

10
Number of Bits

Figure 4.1 Speed performance of Multipliers

XGEN was tested by using it to generate a num-
ber of multipliers. The most important attribute of a
multiplier is its speed performance. The delay of each
multiplier generated was measured using the Xdelay
program. The figure 4.1 shows the variation of de-
lay of the multiplier generated as the number of bits
is varied(XC4010PG191-5). Another important at-
tribute of the parallel multiplier is the number of
CLBs it occupies in the FPGA. The FPGA utiliza-
tion 1s defined as the percentage of CLBs used totally
or partially to the total number of CLBs present in
the FPGA. From the results, utilization for an M by
N multiplier is found to be (0.364(M x N) — 1.4)%.
The delay of N-bit by N-bit multiplier is found to be
(7.25N + 2)ns.

5 Summary and Conclusions

A multiplier generator XGEN has been developed
which is able to generate parallel multiplier netlists.
The multipliers give the (M+N) bit product of N
bit and M bit inputs. The values, M and N are se-
lected by the user. M can be any integer while N
should be an even number. By taking advantage of
XC4000 series FPGA’s internal architecture and the
efficient submodules provided in the Xilinx library,
XGEN produces multipliers which are not only fast
but also utilize relatively small number of CLBs. The

56

multipliers generated by XGEN are 20% faster than
the multiplier implementations reported in literature.
This is achieved by using a parallel multiplier archi-
tecture which requires more CLBs than a sequential
multiplier. These multipliers are useful in finite preci-
sion hardware implementation of artificial neural net-
works, digital signal processors and other similar ap-
plications.

References

[1] C.E. Cox and W. E. Blanz, ” GANGLION- A Fast
Field-Programmable Gate Array Implementation
of a connectionist Classifier ”, IEEE Journal of
Solid State Circuits, Vol. 27, No. 3, March 1992,
pp. 288-299.

J.G.Eldredge and B.L.Hutchings, ”Density En-
hancement of a Neural Network Using FPGAs and
Run-Time Reconfiguration”, Proc. IEEE workshop
on FPGAs for Custom Computing Machines, Cal-
ifornia, 1994.

The XC4000 Data Book, Xilinx, Inc., San Jose,
Calif., 1992.

(3]

[4] XACT Macro Libraries, Vol 2: X-BLOX Design
tool, Ver 4.1, Dec 1992, Cadence Design Systems,
Inc., San Jose, Calif.

[5] A. D. Booth, ” A Signed binary multiplication
technique ”, Quart. J. Mech. Appl. Math. , Vol.
4, part 2, pp. 236-240, 1951.

[6] O. 1. Macsorley, ” High Speed arithmetic in binary
computers”, Proc. IRE, vol. 49, Jan. 1961.

(7] J. L. Holt and J. N. Hwang, ” Finite Precision
Error Analysis of Neural Network Hardware Im-
plementations”, IEEE Trans on Computers, Vol.
42, No. 3, March 1993, pp. 281-290.

P. E. Madrid et. al., ” Modified Booth Algorithm
for High Radix Fixed-Point Multiplication”, IEEE
Trans on VLSI Systems, Vol. 1, No. 2, June 1993,
pp. 164-167.

J. F. Ardekani,” M x N Booth Encoded Multiplier
Generator Using Optimized Wallace Trees”, I[EEE
Trans on VLSI Systems, Vol. 1, No. 2, June 1993,
pp. 120-125.

[10] M.E. Louie and M.D. Ercegovac, A Variable
Precision Multiplier for Field Programmable Gate
Arrays”, Proc. ACM Second International Work-
shop on FPGAs, Feb 1994, Berkeley, CA.

