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Abstract

Multilayer perceptrons (MLPs) are one of the most
popular neural network models for solving pattern clas-
sification and image classification problems. Because
of their ability to learn complez decision boundaries,
MLPs are used in many practical computer vision ap-
plications involving classification (or supervised seg-
mentation). Once the connection weights in ¢« MLP
have been learnt, the network can be used repeatedly for
classification of new input patierns. Several special-
purpose architectures have been described in the litera-
ture for neural networks as they are slow on a conven-
tional uniprocessor. In this paper, we describe map-
ping of MLPs onto Splash 2 — a “custom computing
machine”. The main features of the proposed mapping
are:- (i) the number of nodes in a layer is not fized; (i1)
the number of layers in the network is not fized; (iii)
it 18 based on a set of reprogrammable FPGAs and a
programmable crossbar; and (w) it has a significant
speedup over a uniprocessor. The mapping has been
used for implementing a 3-layer MLP for page seg-
mentation application with an appreciable speedup of
approximately 150 over a SPARCstation 20 for one
million pattern vectors with 20 features per patiern.

1 Introduction

Artificial neural networks (ANNs) attempt to
mimic biological neural networks. One of the main
features of biological neural networks is the massively
parallel interconnections among the neurons. Com-
putational model of a biological neuron involves sim-
ple operations such as inner product computation and
thresholding. A taxonomy of ANNs is given in [5].
Amongst these different kinds of networks, the sim-
plest model is that of a perceptron shown in Fig-
ure 1 {a). Given a d-dimensional input feature vector
X = (#1,23,...,24), the output y is used to deter-
mine the category of the input. A perceptron can be
trained to learn a linear decision boundary in a mul-
tidimensional feature space. Computationally, a per-
ceptron performs innerproduct of its input vector X
and the weight vector W. The output of the inner-
product stage is subjected to a non-linearity, typically
a tanh(z) type of function, producing the desired out-
put. A multilayer perceptron (MLP) consists of sev-
eral layers of perceptrons as shown in Figure 1(b). The

nodes in the i** layer are connected to all the nodes

in the (¢ + 1)** layer through suitable weights. There
is no interconnection among the nodes of a layer. By
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convention, the first layer is the input layer and the
last layer is the output layer. The input pattern vec-
tor is presented to the network and the output is ob-
served on the output layer nodes. Training of a MLP
involves two stages: (i) feedforward stage: the train-
ing patterns with known class labels are presented at
the input layer starting with a randomly initialized
weight matrix and computing the output at the out-
put node. (ii) weight update stage: the weights are
updated in a backward fashion starting with the out-
put layer. The weights are changed proportional to
the error between the desired output and actual out-
put. Typically, the backpropagation algorithm is used
for this purpose. The two steps are repeated until the
network converges. Once the weights have been learnt,
a MLP is supposed to have generalization capability,
i.e., it can near correctly classify unknown patterns.
For this reason, MLPs are commonly used in many
pattern recognition applications. At most three layers
are needed to implement an arbitrary complex deci-
sion boundary [5].

MLPs can be implemented using digital and ana-
log techniques. Computationally, a node in a MLP
performs innerproduct of the input vector with the
weight vector at the node and applies a non-linear
function to the output. In this sense, the computa-
tional power needed at a node is not very demand-
ing. However, the number of interconnections is very
large. For an n—node MLP, O(n?) interconnections
are needed which makes mapping a MLP onto a par-
allel processor a real challenge. On a uniprocessor,
the whole operation proceeds sequentially one node
at a time. Hence, there is no complex communica-
tion involved. However, for a high performance imple-
mentation, efficlent communication capability must be
supported.

In a typical pattern recognition and computer vi-
sion application, the number of input nodes (equiv-
alently, the number of features) is usually large (>
100 is not uncommon). The classification process in-
volving complex decision boundaries demands a large
number of hidden nodes. Yet another constraint is the
desired speed of the computer vision system. Often,
the entire vision system, especially in industrial appli-
cations, needs to operate in “real-time” (frame rates).
Hence, high input/output bandwidth is desired along
with fast classification (recall) speeds. The network
training can be carried out off-line. Therefore, we fo-
cus on the recall phase. For a practical vision system,



Feature Vector

Hidden
Layer

(b)

Figure 1: Perceptron. (a) a schematic of a perceptron;
(b) a multilayer perceptron.
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the total number of input patterns can also be very
high as the number of input patterns are linked to the
large number of pixels in the input image. For exam-
ple, to process a 1,024 x 1,024 image in “real-time”
requires that 30 frames be processed per second result-
ing in the number of input patterns equal to 30 mil-
lion per second. A real-time neural network classifier
is then expected to perform billions of operations per
second. Note that the connection weights in general
are floating point numbers demanding floating point
multiplications and additions. On a general-purpose
uniprocessor, throughputs of this kind are difficult to
achieve even with today’s most powerful processors.
Hence, several parallel and special-purpose architec-
tures have been designed and fabricated to implement
artificial neural networks [11]. It has been observed
that even general-purpose parallel processors fail to
provide high performance for ANNs. Hence, many
special neurocomputers have been built using either
commercially available special-purpose VLSIs (DSPs,
floating-point processors) or special-purpose VLSIs,
possibly, using analog, digital or hybrid design tech-
niques. A special-purpose VLSI architecture provides
the best performance. But, with a dynamically chang-
ing architecture (the number of nodes and layers) from
application to application, it is expensive to design a
VLSI architecture for individual applications. Typi-
cally, architectures with a fixed number of nodes and
fixed number of layers are fabricated.

Many special-purpose implementations of neural
networks have been described in the literature. A
survey of parallel architectures for neural networks is
given in [11]. A multi-layer perceptron implementa-
tion has been described in [7] using GAPP - a systolic
array processor chip. The architecture of SNAP-64,
a 1-dimensional ring of parallel floating point proces-
sors, is described in [6]. Using Xilinx XC 3090 FP-
GAs, Cox et al. [3] describe the implementation of
GANGLION. A single board caters to a fixed neural
architecture of 12 input nodes, 14 hidden nodes and
4 output nodes. Using the CLBs, 8 x 8 multipliers
have been built. A lookup table is used for the acti-
vation function. Bortos et al. [1] describe a smaller
network implementation using less powerful Xilinx XC
3042 FPGAs. Their system supports 5 input nodes, 4
hidden nodes and 2 output nodes. A neuron is based

139

on two XC 3042s and the nonlinearity is based on an
8K EPROM-based lookup table. Several other im-
plementations have been surveyed in [7]. There have
been many other well-known neural network chips and
architectures e.g., ANNA [10], CNAPS [7].

In this paper we take a different approach to map-
ping MLPs onto a custom computing machine. There
are several advantages of a custom computing ap-
proach over a VLSI implementation. In Section 2,
we describe some of the specific advantages. Section
3 contains a brief description of architecture and pro-
gramming environment of Splash 2 — one of the ear-
liest and most successful custom computing machines.
In Section 4, we describe our mapping of MLP onto
Splash 2. In section 5, the performance of the map-
ping is evaluated with respect to an image segmen-
tation algorithm. Section 6 provides conclusions and
future work.

2 Custom Computing Machines

In contrast to a general-purpose processor, the ap-
plication specific integrated circuits (ASICs) are used
for a specific application. For a given application,
ASICs provide higher performance compared to a
general-purpose uniprocessor. If a user can customize
the architecture and instructions needed for a given
application, i.e., program at a gate-level, then a high
performance can be achieved. This is the basis of a
custom computing machine (CCM). Using a CCM, a
designer can tune and match the architectural require-
ments of the problem. There are other advantages
of using a CCM. An ASIC is fast but is costly, non-
reconfigurable and needs more time to implement. A
CCM can overcome these limitations easily. CCMs use
field programmable gate arrays (FPGAs) as compute
elements. Since FPGAs are off-the-shelf components,
they are relatively cheap. By virtue of the reconfig-
urability of the FPGAs, they are easily reprogrammed.
As CCMs do not need to be fabricated with every new
application, they are often employed for fast prototyp-
ing and save a considerable amount of time in design
and implementation of algorithms.

3 Splash 2 — Architecture and Pro-

gramming Flow

Splash 2 is one of the leading FPGA-based cus-
tom computing machine designed and developed by
the Supercomputing Research Center [2]. The Splash
2 system consists of an array of Xilinx 4010 FPGAs,
improving on the design of the Splash 1 which was
based on Xilinx 3090s [2]. Each Splash 2 processing
board has 16 Xilinx 4010s as PEs (X; — X;6) in addi-
tion to a seventeenth Xilinx 4010 (Xo) which controls
the data flow into the processor board. Each PE has
512 KB of memory. The PEs are connected through
a crossbar that is programmed by Xo. There is a 36-
bit linear data path (SIMD Bus) running through all
the PEs. The PEs can read data from their respec-
tive memory. A broadcast path also exists by suitably
programming Xo. The Splash 2 system supports sev-
eral models of computation, including PEs executing
single instruction on multiple data (SIMD mode) and
PEs executing multiple instructions on multiple data



&MIMD mode). It can also execute the same or dif-
erent instructions on single data by receiving data
through the global broadcast bus. Individual memory
available with each PE makes it convenient to store
temporary results and tables. The crossbar cane be
used to set arbitrary communication paths between
PEs. To program a Splash 2, we need to program
each of the PEs (X1~ X1¢), the crossbar, and the host
interface. More details and the schematic of Splash
system and a PE is shown in [9].

4 Mapping a MLP onto Splash 2

In implementing a neural network classifier on
Splash 2, a perceptron implementation has been used
as a building block. Hence, the design of a perceptron
on Splash 2 is described first. A perceptron consists of
two stages, namely (i) an inner product computation,
and (ii) a non-linear function applied to the output of
the previous stage as shown in Figure 1. In our case,
the perceptron is assumed to have 20 inputs which
uses a non-linear function (a sigmoid function) to pro-
duce a real-valued output. We have used tanh(Bz)
with 0 = 0.25 as the non-linearity in our implemen-
tation. For our mapping, two physical PEs serve as
a neuron. The first PE handles the inner product
phase and the second PE handles the non-linearity
stage and writes result to the external memory opera-
tions. As the connection weights are fixed (we assume
that the perceptron has been trained), an efficient way
of handling the multiplication is to employ a lockup
table. Since a large external memory is available at
every PE, the lookup table can be stored. A pattern
vector component is presented at every clock cycle.
The PE looks up the multiplication table to obtain
the weighted product and the sum is computed using
an accumulator. Thus, after all the components of
a pattern vector have been examined, we have com-
puted the inner product. The non-linearity is again
stored as a lookup table in the second PE. On receiving
the inner product result from the first PE, the second
PE uses the result as the address to the non-linearity
lookup table and produces the output. Thus, the out-
put of a neuron is obtained. The output is written
back to the external memory of the second PE, start-
ing from a prespecified location. After sending all the
pattern vectors, the host can read back the memory
contents. A layer in the neural net is simply a collec-
tion of neurons working synchronously on the input.
On Splash 2, this can be easily achieved by broadcast-
ing the input to as many physical PEs as desired. The
output of the neuron is written into a specified seg-
ment of external memory and read back by the host
at the end.

For every layer in the MLP, this exercise is repeated
until the output layer is reached. Note that for every
layer, there is a different lookup table. Thus, we have
been able to implement a MLP on Splash 2 utilizing
the available hardware resources including the cross-
bar for broadcast purposes. A wavefront of computa-
tion proceeds one layer at a time. The schematic of
the mapping for a single layer is shown in Figure 2.

We have implemented a lookup table-based multi-
plication scheme utilizing the external memory since
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Figure 2: Mapping a single layer of a MLP onto Splash
2. The i** PE computes 3 w;;z; and (i + 1)** PE
computes f() for odd i.

Figure 3: Lookup table address computation.

a full fledged floating-point multiplier is not possible
on a Xilinx 4010-based PE. In our implementation of
a neuron, the first PE in the PE pair is devoted to the
inner product computations. There are m multiplica-
tions to be performed per node corresponding to the
m~dimensional weight vector. In general, the weights
are real numbers. The lookup table is divided into
m segments. A counter is incremented at every clock
which forms the higher order (block) address for the
lookup table. The pattern vector component forms the
lower order address bits. Splash 2 has an eighteen bit-
wide address bus for the external memory. We have
allocated high-order 6-bits for the block address and
low order 12-bits are allocated for the offset address
within a block (see Figure 3). Note that the offset can
also be negative corresponding to a negative input to
the lookup table. The numbers have been represented
by a 12-bit 2’s complement representation. Hence, the
resolution of this representation is effectively eleven
bits. Within the PE, the accurnulator is 16-bit wide.
After accumulation, the accumulator result is scaled
down to 12-bits.

The non-linearity used in a neuron is the hyper-
bolic function tanh(0.25z). For efficiency considera-
tions, a lookup table-based approach has been taken
to compute the value of this function on Splash 2. The
address is 12-bits long as obtained from the accumu-
lator. Note that the input can be either a positive
or a negative number. Hence the non-linearity lookup
table has a 11-bit resolution. Though the memory is



16-bit wide, effective 12-bit 2’s complement numbers
only are stored.

5 Performance Evaluation

Let m denote the number of features (no. of input
layer nodes), K be the number of patterns to be clas-
sified and ! be the number of layers in the network.
In our implementation, m = 20, ! = 2 and K is the
total number of pixels in the input image (e.g., 1,024
x 1,024 = 1 M pixels). We now analyze the require-
ments for mapping a MLP onto Splash 2 in terms of
number of PEs required and the number of clock cy-
cles required to complete a classification process. The
number of PEs needed is equal to twice the number
of nodes in each layer. Number of clock cycles needed
= m#* K x[. For the given values of m, K and [, the
no. of clock cycles = 20 * 2% 10 = 40 million. With a
clock rate of 22 MHz, time taken for 40 million clock
ticks = 1.81 secs.

In situations where the number of PEs required is
larger than the available PEs, either more processor
boards need to be added to the Splash 2 system or
the PEs need to be time shared. Note that the neuron
outputs are produced independent of other neurons
and the algorithm waits till all the computations in
each layer are completed.

A MLP has a communication complexity of O(n?),
where n is number of nodes. As n grows, it will be
difficult to get good timing performance from a single-
processor system. With a large number of processor
boards, the single input data bus of 36-bits can cater
to multiple input patterns. Note that in a multi-board
system, all the boards receive the same input. This
parallelism can give rise to more data streaming into
the system, thus reducing the number of clock cycles
by a linear factor. For a 12-bit input, the scale down
factor is 3.

The performance of the mapping on Splash 2 can
be compared with a host implementation for differ-
ent sizes of the neural network. For this comparison,
we look at only a single layer and represent the net-
work size by the number of nodes in that layer. Multi-
layered networks are considered to be linearly scalable
in our architecture. The performance measure is the
processing time as measured by the number of clock
cycles for Splash 2 with a 22 Mhz clock and the elapsed
time on the workstation measure using ‘clock’ func-
tion. The sequential time and the Splash time have
been plotted in Figure 4. Note that the time has been
plotted on a log scale to accommodate the large scale
difference in time.

For our network with 20 input nodes, implemented
on a 2-board system, we achieve 176 million connec-
tions per second (MCPS) per layer by running the
Splash clock at 22 MHz. In general, for a b-processor
board system, a total speed of 176b MCPS is achiev-
able. Thus, a 6-board system can deliver more than
a billion connections per second. This is comparable
to the performance of many high-end VLSI-based sys-
tems such as Synapse and CNAPS which perform in
the range of 5 GCPS [11].
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Figure 4: Speed comparison of neural network on
Splash and Sparc 20.

6 Page Layout Segmentation using
MLP

We now describe the implementation of image seg-
mentation algorithm based on a MLP. The process
of spatial partitioning of an image into mutually ex-
clusive connected image regions is known as image
segmentation. In an automated document image un-
derstanding system, page layout segmentation plays
an important role for segmenting text, graphics and
background areas. Such a segmentation allows us to
apply character recognition algorithms to only text re-
gions. Jain and Karu [4] have proposed an algorithm
to learn texture discrimination masks needed for im-
age segmentation. The performance of this approach
for page layout segmentation has been demonstrated
by Zhong et al.[12]. The schematic diagram of their
segmentation algorithm is shown in Figure 5(a) (M =
7 in our implementation).

The page segmentation algorithm by Zhong et
al.[12] has three stages of computation, namely, (i)
feature extraction, (1i) classification, and, (iii) post-
processing. The feature extraction stage is based on
a set of twenty masks obtained by the learning para-
digm proposed in [4]. The second stage is a multistage
feedforward neural network with 20 input nodes, 20
hidden nodes and three output nodes. The connec-
tion weights and other parameters of the neural net-
work have been learned for document images using the
training approach described in [4].

The input to the algorithm is the gray level scanned
image of the document and the output is the labeled
image, where each pixel is assigned one of the three
classes. A sample input image and the segmentation
result produced by this algorithm are shown in Fig-
ure 5. The input gray level image is shown in Fig-
ure 5(a). The three-level segmentation results ob-
tained by the sequential algorithm is shown in Fig-
ure 5(b) where the background is shown by black pix-
els, the text areas are shown in gray pixels and the
graphics areas are shown in white. Figure 5(c) shows
the results after the postprocessing stage which places
bounding boxes around every segmented area. The
text areas are enclosed by black boxes and graphics
areas are enclosed by white boxes.

The mapping of filtering stage is discussed in [8].
We focus on the neural network-based classification
stage. The classifier has 20 input nodes, 20 hidden
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Figure 5: Page layout segmentation. ga) schematic of the algorithm; (b) Input gray-level image; (c) Result of the

segmentation algorithm; (d) Result

nodes and 3 output nodes. Using the mapping scheme
described in Section 4, the classifier has been mapped
onto Splash 2. The classification stage takes approxi-
mately 295 seconds on a SPARCstation 20 and using
Splash 2 at 22 MHz, it is estimated to take 1.81 sec-
onds. The segmentation output is the same whether
it runs on Splash 2 or a workstation host.

7 Conclusions

In this paper a novel scheme of mapping MLPson a
custom computing machine has been presented. The
scheme is scalable in terms of the number of nodes and
the number of layers in the MLP and provides near-
ASIC level speed. The reconfigurability of CCMs has
been exploited to map several layers of a MLP onto
the same hardware. An important attribute of the
CCMs allows us to combine various sub-stages of an
algorithm on the same hardware system by just chang-
ing the control bit stream. This property 1is useful in
designing real-time complex vision systems. The per-
formance gains achieved using this mapping have been
demonstrated on a network-based image segmentation
algorithm.
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