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Abstract

In this paper, the FPGA implementation of an
Artificial Neural Networks (ANNs) composition for a
Medical Expert System (MES) focused on Pulmonary
Diseases (PDs) is discussed. Using a specially designed
Neuron based on pipelined bit-serial arithmetic and a
successful approximation of its determinant sigmoid
function, a computation module has been structured that
can accommodate eight (8) Neurons in one FPGA. The
use of memory elements allows for up to 256K synapses
to be mapped with high speed and great accuracy
performances. Also, due to the FPGA reconfigurability,
new structures and training patterns can be used to
update this Medical Expert System, in order to fit in
more Pulmonary or other Diseases, with minimal effort.
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1 Introduction

Artificial Neural Networks (ANNs) are recently
playing a significant role towards improved MES, due to
their special qualities [1], [2], [3], [4], [5]. A new ANNs'
composition for the Diagnosis of PDs is presented in this
paper. It has shown very good performance while being
taught and tested with real-world data. It is based on a
cascade of three layers of ANNs that process PDs’
symptoms and other input data, and provide as outputs
the possible PDs with an accuracy of 92%. Furthermore,
the third layer of the structure, that is currently being
designed, will suggest possible medical treatment and
medicines according to the results of previous layers.
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The proposed implementation is based on Field
Programmable Gate Arrays (FPGAs), in order to be
portable and easily reconfigurable. The latter quality is
an important factor, since it allows for new structures
(upgrading the current MES, supporting other diseases,
mapping into other fields of human expertise, etc.) to be
implemented with no changes in the given hardware.

The key issue when designing an FPGA for ANNS, is
to reduce the size of each Neuron in order to fit as many
as possible in one chip. A special Neuron circuit based
on bit-serial pipelined arithmetic and on a linear but
effective approximation of its sigmoid function has been
designed. This way, eight (8) Neurons can fit in one
FPGA chip. The use of large external memory allows the
computation of up to 256K synapses, with speed that
overcomes that of fast conventional processors.

Section 2 of this paper refers to the introduced ANNs'
composition; its development and training is discussed
and its structure is presented. Section 3 briefly explains
the need for an FPGA implementation, and is followed
by a presentation of the designed Neuron element in
section 4. The issue of mapping the whole ANNS'
formation on an FPGA-based system is discussed in
section 5 and the paper ends with a reference to the
procedure of updating the posed MES (section 6).

2 The Medical Expert System

Medical patients’ data constitute this MES’s input
patterns. Yet, due to the single weight and the rendering
that different Medical Doctors (MDs) assign, it is often a

- complex task to transmute them in usable information.

Also, in order for MDs to properly use an MES, it must
follow step by step the Clinical Differential Diagnosis
Methodology (CDDM), whereas intermediate results
have to be made accessible in each step of induction.



Thus, the formation of an MES based on an ANNs
composition, has been forwarded to provide for the
categorization and generalization of the medical data-
input patterns into new patients cases' symptoms. A
mapping of their symptoms' exhibition to the classes of
and to possible PDs, is therefore achieved.

The boundaries of the system were established by
medical experts in PDs. A definite number of inputs
were set, i.e., the questions that MDs ask when
inspecting a patient. They contain related findings of
each one of PDs' symptoms, ie. Cough, Sputum,
Haemoptysis, Fever, Dyspnea, Wheezing and Chest Pain
and historical as well as data obtained from physical
examinations. Moreover, those data were fed to a large
number of ANNs [7], [9], [13], [15] and related to both
a sum of thirty-five (35) PDs and to twelve (12) major
PDs' classes. Data were fed by introducing their
existence or non-existence in possible PDs' symptoms.
Major influences, as the gravity of findings to determine
certain PDs, multiple PDs' interference in a diagnosis
and resulted PDs' ordering on a higher-fitness basis,

were left to the ANNS to learn. Still, lethal PDs a patient.

could suffer, were made certain to be excluded or
confirmed by this MES, by using suitable input patterns,
by a percentage of accuracy that approximates the 92%.

This MES formation, in order to follow the CDDM,
is composed of three layers. Each layer is structured by a
number of three-levelled ANNs [6], [7], [8], [9] of
different number of input and hidden, but of the same
number of output Neurons per layer. Data connections
from the previous to the next ANNs are provided, both
internally and externally to these layers, thus processing
knowledge from more general to more specific. A large
number of experiments lead to this particular newly
proposed MES’s formation, based on these ANNSs’
architecture, which are pictured in Figure 1.

In the first MES’s layer, real-world patient’s data are
treated in order to define possible PDs' general classes.
ANNSs covering the PDs' most important symptoms, i.e.,
Cough, Sputum, Haemoptysis, Fever, Dyspnea,
Wheezing and Chest Pain, as well Historical and
Physical Examinations' data, and their related findings,
are fed with a patient’s clinical data which are then
processed parallel in time. Hence, the outputs of these
ANNs, form pairs along to the outputs of Physical
Examinations’ ANN so as for their outputs to be fed in
the next ANNs of the chain. These ANNs too output
PDs' possible general classes, granting more reliability
to all input data, a patient’s answers and MDs’
inspection results. Consequently, the final ANN, that
suggests possible Clinical Examinations (CEs) to be
performed, concludes the first layer of this MES.

The same number of quasi-identical to the first layer's
ANNSs, form the second one, plus a number of inputs to
all of them: the outputs of the possible PDs' general
classes from the previous layer. In addition, the outputs
of these ANNs are possible PDs. This way, a strong
positive feedback is exercised to each second layer's
ANN s and intermediate results are made clear.

The final layer consists of two (2) similar structured
to the second one ANNSs, that process PDs' old and new
symptoms’ findings. Additional inputs, however, are
provided from CEs and the previous layers' results and
are correlated all together. The outputs of this layer are
planned to be the recommended medical treatment,
appropriate nutrition, possible medicine(s) dosage(s),
the proper way that these should be administrated (Per
Oral - po, Intra Venus - iv, Intra muscular - im) and the
proper time-schedule those should be taken in a given
period of time. Figure 2 depicts the ANNs' composition
for the first layer of the proposed MES. More detailed
information can be found in [10], [11].

Level #1

Level #2

Level #3

Level #4

Layer #1

Layer #2

OO« 0«0

Ooro
4
ol O

L
Ol O

Layer #3

Figure 1: MES’s Layers and ANNs’ Composition.
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Figure 2: Structure of Layer #1.

3 The need for an FPGA-based
implementation

This proposed MES has been implemented in
software, as well as taught and tested with real-world
data. Double precision arithmetic was used and a
sigmoid function for each of the Neurons of the form:

~Qx

f(x)=-i:e_—ax, a: slope of the sigmoid D
te

Yet, a disadvantage of the software solution, is low
speed. Still, this is not a major problem, at least if a
powerful computer is used to run the software. A few
mseconds delay can not be considered important for a
full medical diagnosis. This could be an actual drawback
of the software approach, only if even more complex
systems, that could probably cover many different
infected parts of the human body, are to be constructed.
Such an MES, to cover blood diseases, is already set.

The main reason for using a hardware-based
implementation, is the need for a portable diagnoses
MES. Medicine is not always practised behind an
office's desk, in fact a great part of it is practised at
patients’ homes, at long distances from medical centres.
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The main disadvantages of a hardware, ASIC-based,
implementation, is the high development cost and the
low reconfigurability it allows for. The FPGA solution
ensures that new structures for the proposed ANNs can
be mapped on the system without having to make costly
changes in the hardware. In this paper an FPGA-based
system is presented; it can be used to map the previously
described ANNS, easily assuring this attribute.

Two issues appear in the process of translating a
software program to a digital hardware structure. Firstly,
the size of the hardware has to be dealt with, since the
proposed structure require a large number of Neurons
and synapses, which corresponds to a large number of
adders and multipliers. Secondly, the accuracy of the
arithmetic used affects the quality of the results. The
data width must be selected to be as small as possible
but without affecting the ANNs' performance. Another
issue related to accuracy, is the approximation that will
by used for the sigmoid function. As it can be seen from
equation 1, it cannot be implemented in hardware
without taking too much area. An approximation is
proposed that has worked well in many simulations, and
requires very little space, all the proposed structures and
circuits, have been emulated by proper programs written
in the C programming language, by a, 386@40 platform.
They have not been actually placed on an FPGA.
Though, estimations of their performance can be given.



Thus, the results that are presented in the following
sections are obtained by information taken from the
FPGA's data sheets and the team’s experience with
FPGAs. Next section deals with the size and accuracy
issues, and section 5 presents the mapping of the ANNs.

4 Design of the Neuron

The processing element of an ANN is the Neuron. A
Neuron can be viewed as processing data in three steps;
the weighting of its input values, the summation of them
all and their filtering by a sigmoid function. The Neuron
can be expressed by an equation of the form [12]:

y; =f(2wijxi —91-)

2

The summation can be calculated, either by a parallel
input Wallace tree, or by a serial accumulation. For the
weighted inputs to be calculated in parallel using
conventional design techniques, a large number of
multiplier units would be required. To avoid this, a
Multiplier/Accumulator architecture has been selected. It
takes the inputs serially, multiplies them with the
corresponding weight and accumulates their sum in a
register. Figure 3 shows the proposed Neuron design.
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Figure 3: The proposed Neuron’s architecture.

The Accumulator’s unit is composed of a bit-serial
adder and an eight (8) bit register. The multiplier is
based on a simple architecture that consists of eight (8)
shift elements, some simple logic gates and one (1)
Wallace tree of adders. It works with bit-serial data, in
order to save size, and it is presented in figure 4.
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Figure 4: Multiplier’s Circuit.

Pipelining is used to avoid speéd reduction that might
be caused by bit-serial arithmetic. Since the Most
Significant bits of the shifted values are always constant
“0” or “1” and equal to the MS bit of the original
number, they cannot be used. Thus, shifting of the next
input value can start before multiplication of the
previous one has finished. This multiplier is estimated to
occupy about twenty-five (25) Configurable Logic
Blocks (CLBs) of the XILINX XC3090 FPGA [13].

The width of data has been set to eight (8) bits, a
value obtained from simulations with software. A seven
(7) bit accuracy might also be adequate for the specific
application but the use of eight (8) bits has been decided
in order to be compatible with possible future variations
of the ANNs. The sigmoid of equation 1 has been
approached with a function that is linear for some values
and reaches zero or one for all the others. Figure 5,
shows a circuit that implements this sigmoid and the
comparison of the two functions. The factor 0,0625 has
been selected though extensive simulations with a lot of
different values, and since it is a negative power of 2,
can be implemented by a simple right shift.
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Figure 5: The Sigmoid’s Approximator.
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Figure 5 (cont.): The Sigmoid’s Approximator.

5 Mapping of the ANNs' in an FPGA

The mapping of the proposed structure on an FPGA
module, has to be based on a trade-off between speed
and chip size. Since the total number of Neurons is
approximately 8,000 connected with 220,000 synapses,
a scheme for serial calculation of each ANN has to be
used. Each ANN, consists of three slabs (Neural layers).
This architecture deals with the implementation of one
slab; also, it is based on an eight (8) Neuron processing
module and on large external memories.

One FPGA (XILINX XC3090) chip will contain eight
(8) Neurons. A parallel-in serial-out register is used to
carry the inputs from an external memory to the
synapses, whereas a multiplexer (MUX) module
addresses the outputs and stores them in the same
memory to be used in the next ANN [14]. Figure 6
shows the proposed implementation.

A control module that monitors the execution of the
entire structure (not shown), can also be integrated in the
FPGA. Yet, to allow for possible increase in the
complexity (and thus in the size) of the control module,
the use of a second FPGA chip could be considered.
Still, this approach bears no further complexity.

The MES will be composed by the next items: the
FPGA, the RAM for intermediate store of ANNSs'
outputs and the memory that contains the weights. The
proposed system structure is shown in figure 7. Two
more elements are there, the input MUX, that is used to
select inputs for the FPGA module either from previous
results or from the user, and the configuration’s RAM
that holds the configuration bit stream for the FPGA.

The weights and the configuration’s RAM are loaded
externally. This allows for the easy update of the system
as will be discussed in the next section. The sizes of the
memories, depend on the complexity of the MES and the
total and maximum number of the ANNSs’ synapses.
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Figure 6: FPGA’s Contents.
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More specifically, the Weights Memory contains one
byte for each synapse; the use of a 256 Kbyte RAM to
hold all the 220,000 weights of this structure, is thus
proposed. The size of the Intermediate RAM is
proportional to the maximum possible number of inputs
for one slab per ANN. This size is 290 inputs for this
application. Hence, this RAM’s size results in 2 Kbytes.
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RAM with||RAM with
Previous [[Current
Outputs ||Outputs

Figure 7: System Modules’ Connections.

As already mentioned, speed performance may not be
the key factor, but is still important. For each slab with N
Neurons and M inputs (or M synapses/Neuron), the time
required is NxM/8 operation cycles. On the other hand,
with adequate pipelining, each operation cycle will be
performed at the time of 2 clock cycles. The total time
for one ANN slab will then be NxM/4 clock cycles.

Using a clock at 20MHz, the full MES will require
about 3mseconds. A powerful PC (386@40) has already
been used and implements about 0.1 seconds.

6  Training and Reconfiguring the MES

Updating the system can be considered mandatory,
mainly for two reasons. Firstly, should any new data be
fed into the training algorithm causing new weights to
show a better performance, and secondly, should a new
structure be developed. A powerful computer can be
used at a medical centre, that will constantly train the
network (MES) with new real-world data. The outcome
of this process can be stored in a Weights File.

The development of a new structure that will either
enhance the existing MES or add new capabilities to it
(consider more symptoms, etc.), should pass through a
phase of software simulation. When the results show that
it can be used in practical situations, a designer will have
to make an FPGA prototype (using the Tools of
XILINX) and prepare a Configuration Bit stream File.

Both Files can be then loaded on the system via
magnetic media or even through systems that
communicate by using eMAIL communication
protocols. Figure 8 shows the full presented updating
procedure. Note the simplicity, high speed and
portability of the approach, that leaves MDs out of
having to deal with the technical aspects of this MES.

Real-World
Data » Training >
Algorithm Weights
MEMORY
FPGA based
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the ANNs CAD Tools "| Bitstream g RAM

Figure 8: MES’s Updating Procedure.
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8 Conclusions

The proposed mapping of an ANNs’ composition in
an FPGA-based system, was proven to provide for very
prominent results. This composition was used for the
structuring of an efficient portable and reconfigurable
MES to assist MDs in PDs’ diagnoses. Software and
hardware implementations were studied and by
simulation results size and speed factors proved to be
overcome. On the other hand, the enhancement of this
MES through the augmentation of its patterned input
data, will have to follow. The integration of medical
theoretic knowledge and the interference with other
pulmonary teams' knowledge as well as to the learning
by new algorithms, would be the next target, easily
transferred on the proposed FPGA-structured basis. The
final realisation of a general-purpose MES to be the
basis of inductively diagnosing other medical diseases,
is the outmost scope of this research team.

References

(11 D. G. Bounds, P. J. Lloyd, B. Matthew, and G.
Waddell, "A Multi Layer Perceptron Network for
the Diagnosis of Low Back Pain", Proc. Int. Conf.
on Neural Networks, San Diego, Vol. 2, pp. 481-
489, 1988.

[2] A. Durg, W. V. Stoecker, J. P. Cookson, S. E.

Umbaugh, and R. H. Moss, "Identification of

Variegating Coloring in Skin Tumors: Neural

Network vs. Rule-Based Induction Methods", IEEE

Eng. in Med. and Biol., Vol. 12, pp. 71-74 & 98,

1993.

[3] B. H. Mulsant, "A Neural Network as an Approach

to Clinical Diagnosis", M. D. Computing, Vol. 7, pp.

25-36, 1990.

[4] T. J. O Leary, U. V. Mikel, and R. L. Becker,

"Computer-Assisted Image Interpretation: Use of a

Neural Network to Differentiate Tubular Carcinoma

from Sclerosing Adenosis", Modern Pathology, Vol.

5, pp. 402-405, 1992.

[S1 R. Poli, S. Cagnoni, R. Livi, G. Coppini, and G.

Valli, "An NN Expert System for Diagnosing and

Treating Hypertension", IEEE Comp., Vol. 24, pp.

64-71, 1991.

293

[6] D. R. Hush, and B. G. Horne, "Progress in
Supervised Neural Networks", IEEE Sig. Proc.
Mag., Vol. 10, pp. 8-39, 1993.

[71 R. P. Lippmann, "An Introduction to Computing

with Neural Nets", IEEE ASSP Mag., pp. 4-22,

1987.

[8] R. S. Scalero, and N. Tepedelenlioglu, "A Fast

New Algorithm for Training Feedforward NN",

IEEE Trans. on Sig. Proc., Vol. 40, pp. 202-210,

1992.

[9] B. Widrow, and M. A. Lehr, "30 years of Adaptive

Neural Networks: Perceptron, Madaline, and

Backpropagation", Proc. of the IEEE, Vol. 78, pp.

1415-1442, 1990.

[10] G. - P. K. Economou, C. Spiropoulos, N. M.

Economopoulos, N. Charokopos, D.

Lymberopoulos, M. Spiliopoulou, E.

Haralambopulu, and C. E. Goutis, "Medical

Decision Making Systems  in Pulmonology: A

Creative Environment based on Artificial Neural

Networks", 1994 IEEE Int. Conf. on Systems, Man

and Cybernetics.

[11] G. - P. K. Economou, C. Spiropoulos, N. M.

Economopoulos, N. Charokopos, D.
Lymberopoulos, M. Spiliopoulou, E.
Haralambopulu, and C. E. Goutis, "Medical

Diagnosis and Artificial Neural Networks: A
Medical Expert System applied to Pulmonary
Diseases", 1994 IEEE Workshop on Neural
Networks for Sig. Proc..

[12] F. N. Sibai, "A Fault Tolerant Digital Artificial
Neuron", IEEE Des. & Test of Comp., pp. 76-82,
1993.

[13] XILINX Inc., The Programmable Gate Array Data
Book, 1991.

[14] F. Distante, M. Sami, R. Stefanelli, and G. Storti-
Gajani, "Mapping Neural Nets onto a Massively
Parallel  Architecture: A  Defect-Tolerance
Solution", Proc. of the IEEE, Vol. 79, pp. 444-460,
1991.



