Fast Prototyping of Artificial Neural Network: GSN Digital Implementation

Eduardo do Valle Simdes, Luis Felipe Uebel & Dante Augusto Barone
Curso de Pés-Graduagdo em Ciéncia da Computacdo - Universidade Federal do Rio Grande do Sul

Porto Alegre, RS - Brazil

Caixa Postal 15064 - CEP 91501-970

E-mail: EDSIM, UEBEL, BARONE@inf.ufrgs.br

Abstract

This work describes a framework for a GSN (Goal
Seeking Neuron) Boolean neural network fast
prototyping into an user-programmable gate array. This
system provides a VHDL language description of the
trained network, allowing the direct implementation of
the circuit on an academic FPGA (Field-Programmable
Gate Array). A GSN software tool was designed to train
and simulate an user-defined network, with diverse
dimensions and applications. The implemented network
presents 60 neurons in four pyramids with four layers.
The short propagation time (30 ns) of the network output
provides the requirements to deal with real time neural
applications

1. Introduction

Artificial Neural Networks (ANN) have made
possible the solution of disparate problems more easily
than the solutions previously presented to problems such
as: pattern recognition, image processing and so on. All
these applications need a large amount of processing
capacity, which is made possible only with the
development of specific architecture, The design of
suitable neural architecture is imperative to reach good
performances at reasonable economical COsts.

The development of ANN in analog {1] or digital [2]
integrated circuits, is in general bounded by the need to
generalize the functions performed by the designed
circuit, aiming its utilization in a wider range of possible
applications. This  generalization contributes 1o

0-8186-6710-9/94 $4.00 © 1994 IEEE

192

economical factors, nevertheless it diminishes the natural
network size and its performance, limiting its application
in real time processing substantialy.

The utilization of a programmable logic circuit to
implement a neural network becomes very attractive
since it allows fast hardware designs. It also permits to
make design modifications at low costs. Among the
programmable logic circuits, the Field-Programmable
Gate Arrays (FPGA) represent the most attractive option
to implement neural networks.

This work presents a fast prototyping system for
Boolean neural networks. That system enables the
designer to define the structure of the neural network and
the pattern to be learned. It also performs the simulation
of the ANN, helping to choose a particular architecture.
It delivers a VHDL description, which is taken as input
to a FPGA prototyping tool. In a previous work, the
design of a Boolean GSN ANN full custom circuit,
named DIANNE ([3-4] was shown. The development of
this circuit has shown the authors the importance of
developing a flexible hardware to implement different
ANN configurations without disrupting performance. In
this sense, considering just the GSN Boolean model, we
tried to use an academic FPGA matrix, named FLECHA,
to prototype an ANN based on this model.

The article contains a brief description of the GSN
model, a description on how the proposed ANN system
works, a description of the employed methodology in the
implementation of the neural networks, a brief
presentation of FLECHA programmable logic cell
matrix, and finally, the results obtained from the
prototyping of the GSN neural network circuit in the
FLECHA matrix.



2. Presentation of the FLECHA Matrix

The FLECHA matrix and all of its characteristics try
to provide control logic between microprocessors and
memories, where gate complexity is not too high, but the
number of I/O signals that need to be processed is. This
application leads to the ideal topology of the FLECHA
matrix the one that presents the same number of logic
cells and I/O cells. This is an efficient way to get the
balance between the implementation capacity and the
great demand of big interconnections required by glue
logic applications.

The general topology of the FLECHA matrix is
shown in figure 1, and it has 40 programmable logic cells
distributed in two columns of four rows or groups with 5
logic cells and 5 I/O pads that can communicate through
the central bus to implement complex functions. This

5]

O |

Py

A Central
D Bus

~\ "~ Switch #
511 block

figure presents the regularity of the chip layout,
developed with ES2 CMOS 1.2 pum technology. This
topology allows the array to implement a function with
up to five cells, or many small functions in each row.
There are cases in which one needs to use more than five
cells to implement a complex function, then one can
connect two or more groups of 5 cells in the matrix by
the central bus. Thus, user-programmable logic cell
arrays are viable alternatives to conventional mask-
programmed gate arrays in most applications. However,
since the FLECHA matrix is a standard user-
programmable product, it does not suffer from the costs
and risks of mask-programmed devices; there are no
NRE (Non-Recurrent Engineering) charges, no test
program development, no inventory risk, and no schedule
risk due to design changes [9-10].

Fig. 1: Layout and general topology of the FLECHA matrix.

2.1. Design Considerations

The architecture of FLECHA matrix has three distinct
elements: the programmable logic cells, the configurable
1/O pads, and the interconnection network. Five logic
cells are placed in groups with five I/O pads, and these
groups are regularly distributed by the matrix. This
solution provides a direct communication between pads
and the internal logic cells.

Figure 2 shows the architecture of a three-input logic
cell that provides the functional elements, with which the
logic of the user is constructed. In this logic cell, a shift-
register chain and a 8:1 multiplexer are used to perform
the truth table of the functional block of the cell. The

193

logic cells of FLECHA are able to implement any
Boolean function of up to three inputs, representing the
function truth table in the internal static memory cells.

A 2:1 multiplexer can connect an internal register to
the output of the functional block if it is necessary to
implement sequential logic, as it is shown in figure 2.
This register is an edge-triggered D-type flip-flop. Thus,
the 40 logic cells are capable of implementing any 40
independent sequential functions of up to 3 input
variables. Four multiplexers are used to connect the three
inputs and the output of the cell to the lines of the data
bus, which is used to interconnect each cell side by side
as shown in figure 2.



FUNCTIONAL BLOCK
o

LI
=

D7

<moZTmMEZ

OUTPUT BLOCK

—
M
E
M
0
R
Y

b

1
b
A

SWITCH

BLOCK

AN

CELL DATA BUS

AN

LOGIC CELL

LEFT NEIGHBORING CELL

RIGHT NEIGHBORING CELL

Fig. 2: The architecture of a three-input logic cell.

The function of the logic cells, the configuration of
the I/O pads, and the routing of the interconnection
network are defined by a configuration program stored in
the internal static memory cells. These cells consist of a

shift-register chain that can be loaded automatically at
power-up. The process of loading the configuration
memory is independent of the logic functions of the user
that are implemented in the matrix.

\\ CELL

DATA

DAt

2N LOGIC

CELLS

SWITCH BLOCK

CENTRAL BUS

Fig. 3: The row placement technique applied to a 40 cell matrix.

Bi-directional pads are connected to their control
circuits to provide the configurable input/output blocks.
The I/O pad architecture allows the separation between
the. pad proper circuit (buffer and filter) and the
configuration structure. Thus, the pad circuit can be re-
designed separately, in case a new process technology
becomes available.

194

2.1.1. Internal Interconnection Network

The interconnection topology of FLECHA was
designed according to the row placement principle,
developed to reduce the amount of switches without
reducing the interconnection capacity of the logic cells.
This technique consists of placing all the cells that
implement the same logic function side by side (it means



that a powerful software tool will be necessary to place
and route these cells). Once they are placed in rows (see
figure 3), those cells need only to exchange signals with
their neighbors, and this fact permits a great
simplification in the switching structures. If it is
necessary to use more than one row of cells to implement
one big logic function, a new row, under or above, can be
connected by the central bus utilization. The details of
the innovative placement strategy are emphasized in
reference [10]. '

2.2. Performance Considerations

The 48 pin DIL-type package was chosen because of
its good relation between costs and available pins. This
package allows the design of a matrix with 40 logic cells
and 40 1/O pads, performing 600 equivalent gates. Any
Boolean function can be implemented in each logic cell,
where a large number of registers are provided, and any
necessary routing paths can be defined between the logic
cells and the 1/O pads.

Programmable gate arrays are assigned a speed grade
based on the maximum toggle rate of the internal flip-
flop of a single logic cell [9]. The matrix operational
frequency, due to its simplified internal structures, is
about 145 MHz, as a single logic cell delay is less than
6.0 ns. The external frequency is often smaller due to the
delay of the I/O pads. With the pads of FLECHA matrix,
this external frequency is 66 MHz.

3. Tools for ANN CAD

The design environment is divided into five different
phases: i) sizing of the neural net by the user; i) training
of the net with the patterns delivered by the user; iii) logic
mapping of each neuron of the net, which is treated as a
black-box; iv) generation of the VHDL description of the
complete GSN neural net, with all pyramids and neuron
circuits already trained to the FPGA design system; v)
simulation of the behavior of the neural net. These five
steps will be described after a presentation of the GSN
model.

195

3.1. Brief Description of the GSN Model

The GSN model was proposed by Edson Filho et al.
[5-7]. It is derived from the PLN model of Kan and
Aleksander [8]. The GSN differs from the PLN model
because it can present in its output an indefinite state U.
The network consists of pyramids that can be connected
in different organizations, making IC implementations
easier.

This type of network has many advantages over other
neural network implementations: i) it presents a lower
number of interconnections between neurons; i) its
simple structure permits asynchronous implementation of
neurons, allowing massive parallel processing; and iii) its
pyramidal regular structure gives good flexibility to the
designer.

The GSN neural network has three different states of
operation: the Validation, the Learning and the Recall
Modes.

The goal in the Validation Mode is to stabilize the
network in an indefinite state. In this mode the neuron
validates the possibility of learning without disrupting
stored values, selecting appropriate memory positions for
this possibility.

The output of this mode is given by: 1 iff all the
selected memories are I; 0 iff all the selected memories
are 0; and U for all other values of the selected
memories. If the pyramids compute the indefinite value
U, they are not saturated for this pattern and have
capacity for learning.

The Learning Mode aims to store appropriate values
in memory positions selected in the Validation Mode.
These values are stored only in memory positions having
an indefinite value U.

The goal in the Recall mode is to stabilize on the
values I or 0. The indefinite value U will not be
propagated and the patterns will be recognized among
learned patterns.

Figure 4 presents the learning and validation modes
of the network. The memory positions with the signal (+)
will change their context to acquire the pattern being
learned. The signals (*) show the positions of the selected
memories in the validation mode.

The output of this mode is given by: 0 iff the number



of 0 values in selected memories is greater than I; 1 iff
the number of 1 values in selected memories is greater
than @; and U iff the number of I and 0 is equal.

After the one-shot learning provided by the GSN

00U
2| of1
P 10U
v 1—>3‘;11 0
\Y%
E 00| U
C 0
T %f_OI U
0 1010
R

1- 1|1

supervised learning algorithm, consisted of the validation
and learning modes, the network is ready to classify
patterns previously learned. The network becomes ready
to work in the recall mode.

N
feed-forward
0
00] U
07 5011 1
U 10] 0 v
1110
1
p feed-backward
<

Fig. 4: Validation and Learning Modes in GSN Neural Network.

3.2. Sizing of the Neural Net

The sizing of the neural net is made by the user, who
specifies the software the configuration of the neural net.

The definitions made by the ANN designer include: i)
number of inputs of the net, that is, the number of inputs
each pyramid may have is specified. That number does
not need to be equal to the number of inputs of the
considered pattern; if) number of levels of each pyramid;
iii) number of inputs of each neuron. The specification of
the number of levels and inputs of the neurons produces a
greater uniformity to the saturation for the learning of
new patierns. Once the user has made all those described
definitions, the system automatically builds the neural
net.

3.3. Training of the Net

In this phase, the system teaches the neural network
to recognize the patterns delivered by the user following
the rules presented before:

The user himself can define the output pattern to each
input pattern previously presented to the network through
a file. The training of the net includes the validation and
learning modes, which permit to identify the memory
locations that can learn a new pattern presented to the
net, and effectively teach the net how to acquire a new

196

pattern.

The user has some flexibility, such as: i) to allocate
just one pyramid to a pattern, which allows a wider
utilization of the net; i) to code the output pattern in
binary notation to all pyramids, which allows up to 2%
different patterns to be learned, where n is the number of
pyramids in the net.

3.4. Logic Mapping of the Neurons

Each neuron of the net is mapped as a black-box. The
system excites a neuron with all possible input
combinations and identifies the corresponding output to
each excitation. With this procedure, it is possible to
construct a truth table that leads to a logic description of
the neuron. This logic description gives rise to a
schematic diagram of each neuron. This operation is
extended to all neurons of the network. Each input/output
of a neuron must be represented by two bits, due to the U
value. We have then the 0 logic value, represented by 00,
the I value, by 10, and the U value, by 01.

The neuron modeled by a black-box is shown in
figure 5. This procedure simplifies the logic synthesis of
the neuron and diminishes the power consumption of the
logic gates. The programming of the neural network
becomes implicit to the logic mapping, allowing no waste
of logic connections, enabling a better performance of the



system.,

El E2
VS
E1 E2 |Output
0 0 U
0 1 1
0 U 1
1 0 0
1 1 U
1 U 0
U 0 0
U 1 1
U U U

¥
OUTPUT

Fig. 5: Black-box representation of the neuron.

3.5. VHDL Description

Once the logic mapping of each neuron is completed,
the system delivers the user a VHDL description of the
mapping of the whole network. This enables the
prototyping of the net. The VHDL description permits a
direct interaction with the FPGA prototyping systems,
which are responsible for the logic synthesis of the
circuit.

User Data

The VHDL description includes non-minimized logic
mapping of all neurons of the neural network, following
the sizing of the net, previously defined by the user.

3.6. Network Simulation

The system allows the recall mode simulation with
noise inclusion (the inversion of some bits) in the user
proper patterns or the ones used to train the neural
network. The neural network simulation provides the
detection and improvement of the learning of the system,
aiming to increase the network recall level.

The recall level depends on the similarity degree of
the patterns taught to the system and the number of
pyramids. The recognition capability of the system
increases with lower similarity degrees between patterns,
and greater number of pyramids. With the utilization of
the simulator, a preliminary evaluation of the recall level
is made possible, permitting a fast test and validation of
possible design modifications.

Figure 6 shows the flow chart of the neural network
design environment. The simulation module permits
modifications of the entire set of input patterns to
calculate the size of the network by the user, in an
interactive form.

amid Layers

Se—
Number of
System Inputs

Number of Pyr-

Number of
Neuron Input

Sizing of the

Neural Network

[]

Network
Simulation

l ’ Training of I
Input Pattern
Output Pattern the Network

Logic Mapping
of the Neurons

VHDL
Description

Fig. 6: The flow chart of the framework for neural networks design.



4. Automatic Integrated Circuit Generation

A GSN neural network was implemented by the first
time in the DIANNE circuit [3-4]. This circuit, having
60 neurons grouped in 4 pyramids, has 17 thousand

transistors. The DIANNE circuit stores the weights of the
neurons in the internal memory cells and processes its

outputs according to these weights and the pyramid

inputs.

Table 1: Truth table of the neurons showed in the pyramid in figure 7.

: INPUTS
LAYER NEURON 00 {01 {OU|( 10| 11 |1U (U0 | Ul |UU
) 1 AD 0 0 - U 0 - - - -
1 Al 0 U - U 0 - - - -
1 A2 U 1 - U 0 - - - -
1 A3 1 U - 1 1 - - - -
1 Ad 0 U - 1 U - - - -
1 AS 0 U - U U - - - -
1 A6 1 U - U 1 - - - -
1 A7 0 1 - 1 U - - - -
2 BO 0 U 0 U U U 0 U 0
2 B1 U 0 0 U 1 1 U U U
2 B2 1 U 1 0 U 0 U U U
2 B3 U U U 0 1 U 0 1 U
3 Co 1 0 U U U U 1 0 U
3 C1 0 0 0 1 0 U U 0 0
4 ) U 1 1 0 U 0 0 1 U
The same topology of the DIANNE circuit was inputs.

implemented in the FLECHA matrix too. In that case,

the development took a different way. With the
utilization of the presented system, a VHDL description
of each neuron was provided. The weights of the neurons
were not stored in the internal memory cells, but they
were directly mapped in the VHDL description of the
neuron. This solution provides a minimization of the
logic gates, since only the significant connections are
taken into account. It reduces the circuit flexibility, since
it has to be redesigned if the network has to learn a new
pattern.

Figure 7 presents one of the four pyramids of the
neural network. The neurons of the first layer are marked
with leiter "A", the neurons of the second, with letter "B”
the ones of the third, with letter "C", and the neuron in
the fourth layer is marked with letter "D". The inputs that
are accepted by the network are only the 0 and I values.
It provides the reduction of the input bus dimensions.

Table 1 shows the black-box treatment of the same

pyramid. Note that the first layer neurons do not have U

198

INPUT VECTOR

OUTPUT

Fig. 7: The organization of a GSN neural
network pyramid.

Table 2 presents the VHDL description of the neurons
shown in figure 7. Note that we need two bits to represent
the three possible states of each neuron. The inputs of
that pyramid are represented by letter "e". The "!" symbol
is equivalent to the logic NOT, "&" to the logic AND,



and the symbol "#" to the logic OR. The processing time

Table 2: VHDL description of the neurons presented in figure 7.

LAYER

NEURON

VHDL DESCRIPTION OF EACH NEURON

1

A0

A00 = GND;
A0l = e00 & 1e01;

Al

Al10 = GND;
All =!el0 & ell #e10 & lell;

A2

A20 =1e20 & e21;
A21 =120 & le21 # €20 & le21;

A3

A30=1e30 & !e31#e30 & !e31#e30 & e31;
A31 = 1e30 & e31;

A4

A40 = e40 & ledl;
A4l = 1e40 & ed] # ¢40 & e41;

AS

A50 = GND;
A51 = 1e50 & e51 # e50 & le51 # €50 & e51;

A6

A6D =1e60 & !e61 # e60 & e61;
A61 =1e60 & e61 # e60 & !e6l;

A7

AT70 =1e70 & e71 # €70 & te71;
A71 =e70 & ¢71;

BO

B00 = GND;

B01 =1A00 & !A01 & A10 & !A11 #A00 & !A01 & !A10 & A1l #
A00 & !A0T & A10 & !AT11#A00 & !A01 & !A10 & A11#!A00 &
A0l & A10 & !AL1L;

B1

B10 =A20 & !A2]1 & A30 & !A31#A20 & !A21 & 1A30 & A31;
Bl1=1A20 & !A2] & !A30 & !A31# A20 & !A21 & !A30 & !A31 #
1A20 & A21 & !A30 & 1A31#1A20 & A21 & A30 & !A31#!1A20&
A21 & !A30 & A3l;

B2

B20 =!A40 & 1A41 & !A50 & !AS1 #1A40 & !A41 & 1AS0 & AS51;
B21 =!A40 & !A4]1 & AS0 & 'AS1 # A40 & 1A41 & AS0 & !AS1 #
1A40 & A41 & !AS0 & 1AS1#1A40 & A41 & AS0 & 1AS1 #!1A40 &
A4l & 1AS0 & AS51;

B3

B30 = A60 & 1A61 & AT0 & !AT1#!A60 & A6l & A70 & !AT1;
B31 =1A60 & !A6] & !AT0 & !AT1#!A60 & !A61 & AT0 & !AT1 #
1A60 & 1A61 & !AT0 & AT1# A60 & 1A61 & IAT0 & AT1 #!1A60 &
A6l & !A70 & AT1;

Co

C00 =!B00 & !B01 & !B10 & !B11 #!B00 & B01 & !B10 & !B11;
C01 =!B00 & !B01 & !B10 & B11 # B00 & !B01 & !B10 & !B11 #
B00 & !B01 & B10 & !B11 # B00 & !B01 & !B10 & B11 #!B00 &
B01 & !B10 & B11;

C1

C10 = B20 & !B21 & !B30 & !B31;
C11 = B20 & !B21 & !B30 & B31 # !B20 & B21 & !B30 & !B31;

Do

D00 =1C00 & !CO1 & C10 & !C11 #!C00 & !C01 & !C10 & C11 #
1C00 & !C01 & C10 & !C11;
D01 =1!C00 & !C01 & !C10 & !C11#C00 & 1C01 & C10 & !C11 #
1C00 & CO01 & !C10 & C11;

of the neural network design tool was about 1 minute.

The next step of the neural network development with
the FLECHA matrix was the specification of the
programmable logic cells that will implement all the 60
neurons. The logic cells can implement any three-input
combinatorial function by the representation of its truth

199

table. Each neuron of the pyramid has two inputs (each
one represented by two bits) and has two bits as output
(to represent the three possible states). Thus, each output
bit can be mapped by a 4-input truth table, and a basic
neuron needs a group of 6 logic cells to be implemented,



Figure 8 presents these cells.

I
¥

pmid

OUTPUT = {B

,B]] - {uuu‘ ll1ll' IIUII}

Fig. 8: The implementation of a basic neuron with six logic cells.

The first layer neurons receive two inputs of just one
bit, and so, they need two truth tables of two inputs to
represent their two bits output. These neurons can be
implemented by just two logic cells of the FLECHA
matrix. If we join each two neuron of the first layer to its
corresponding second layer neuronm, it is possible to
represent them by just 6 logic cells, since this logic set
has only two inputs and one output, all of two bits. The
described implementation takes 42 logic cells to
represent each pyramid. The maximum delay to
propagate signals through a pyramid is 36 ns.

The same data-set, with four pyramids, was
implemented in the ALTERA system [11], to provide
performance comparisons. The utilization of EPLDs
(Erasable Programmable Logic Devices) design tool
(MAX+PLUSII) permitted each neuron to be directly
introduced by its VHDL description, taking into account
basic logic gates (NOT, AND and OR). With this data,
the MAX+PLUSII performed the global logic synthesis,
the partitioning, the timing analysis and chose the most
adequate circuit of the MAXS000 family, as specified by
the user. The system defined EPM5032 with 28 pins as
the most suitable circuit. From this 28 pins, 11 were used
to input and 8 to data output for the four employed
pyramids. Just 8 logic cells were used (25% of the total
capacity).

In the logic synthesis phase, the network digital
circuit suffered a drastic simplification, which permitted
the utilization of just two EPMS5032 logic cells to
calculate the two outputs of each pyramid. Five of the
inputs are irrelevant to calculate the pyramid outputs, in

200

this specific application, and they were disregarded by
the system. This represents a high redundancy of the
ANNS. The logic synthesis and choice of the appropriate
circuit were performed in 25 seconds in a 486DX33 MHz
platform. The maximum propagation delay in the circuit
is 42 ns, representing then a high performance to the
EPLD implemented network.

The minimized net was also implemented in the
FLECHA matrix. To do so, the MAX+PLUSII output
data, obtained by the logic synthesis, was used, since the
specific FLECHA matrix tools are under development.

The implemented solution of FLECHA differs from
the solution of ALTERA, since cells of FLECHA have
individual low capacity, leading to the need of grouping
many cells to treat each output. The implementation of
the complete neural network used 34 of the 40 available
logic cells of the matrix, presenting a maximum delay of
30 ns in the worst case.

The results obtained with the two systems have shown
high recognition rates: 95%, with the logic inversion of
one bit in the input pattern, and 80%, with two bits
presenting logic inversion. In these cases, 100 patterns
were used in the training phase. The recognition rates
and performances show that this kind of network is
suitable to real time neural applications.

5. Conclusions

This work has proved the ability of the GSN model in
integrated implementations, specially in FPGAs, since



they presented reduced logic, optimizing the number of
necessary logic cells to the implementation. This feature
constitutes a big factor of merit in comparison to fixed
GSN ANN implementations, as DIANNE. As mentioned,
the DIANNE chip must contain all GSN neurons in order
to provide flexibility.

The programmable structures of the FPGA allow a
network optimization linked directly to the tought
patterns, reducing its generality, its implementation
costs, and increasing its performance. The complete re-
design of the circuit can be made in a short time delay,
enabling the circuit to be tested and validated under
different conditions imposed to the hardware system.

The design of a direct interface between the GSN
software simulator and the FPGA prototyping tools,
using the VHDL language, has permitted a significant
reduction in the network implementation time. The
modification of the output data format, delivered by the
GSN simulator to the VHDL language, permits these
prototyping tools to recognize directly the constitution of
the network neurons, without the need of the user's
interventions.

6. References

[1] R. Dominguez-Castro, A. Rodriguez-Vazques, J. L.
Huertas and Sanchez-Sinencio, Analog Neural
Programmable Optimizers in CMOS VLSI
Technologies, IEEE Journal of Solid-State Circuits,
Vol. 27, No. 7, July 1992, pp. 1110-1115.

{2] C. Lehmann and F. Blayo, Digital VLSI Generic
Elements for Neuro-Emulators using Systolization,
International Workshop on Algorithms and Parallel
VLSI Architectures, June 1990, pp. 19-21.

[3] Luis Felipe Uebel and Dante Barone, DIANNE: A
GSN Neural Network VLSI Implementation, 5th
International Symposium on IC Technology, Systems
& Applications, September 1993, pp. 678-682.

[4] Luis ©Felipe Uebel and Dante Barone,
Implementagiio de uma Rede Neural GSN em um
Circuito Integrado, X Simpdésio Brasileiro de

| Inteligéncia Artificial, October 1993, pp. 459-468.

201

[5] E.C. D. B. Filho, Investigation of Boolean Neural
Networks based on a Novel Goal-Seeking Neuron,
Ph.D. tese, University of Kent, England, 1989.

[6] E.C.D.B.Filho, D. L. Bisset and M. C. Fairhurst,
A Goal Seeking Neural for Boolean Neural
Networks, Proc. International Neural Network
Conference, Paris, France, Vol. 2, July 1990, pp. 894-
897.

[71 E.C. D. B. Filho, M. C. Fairhurst and D. L. Bisset,
Analysis of Saturation Problem in RAM-Based
Neural Network, Electronics Letters, Vol. 28, No. 4,
February 1992, pp. 345-346.

[8] I. Aleksander and W. K. Kan, A Probabilistic
Logic Neuron Network for Associative Learning,
Proc. IEEE First Intl. Conf. on Neural Networks, San
Diego, California, Vol. II, June 1987, pp. 541-548.

[91 H. Hung-Cheng, K. Dong, J. Y. Ja and R
Kanazawa, A 9000 - Gate User-Programmable Gate
Array, IEEE Custom Integrated Circuits Conference,
1988, San Jose, California, pp.15.3.1-15.3.7.

[10] Eduardo do Valle Simdes and Dante Barone,
Projeto e Implementacio de uma Célula Logica
Programavel do Tipo Field-Programmable Gate
Array, VII SBCCI - Simpdésio Brasileiro de
Concepcio de Circitos Integrados, Rio de Janeiro,
September 1992,

[11] Altera Corporation, MAX+PLUS II - Getting
Started, 1992, 137 p.



