A FAST SIMULATOR FOR NEURAL NETWORKS
ON DSPs OR FPGAS!

M. Adé, R. Lauwereins2, J. Peperstraete
ESAT-Laboratory , K.U.Leuven
K. Mercierlaan 94, B-3001 Heverlee, Belgium
Tel.: +32 -(0)16 - 22 09 31, ext. 1035 Fax: +32 -(0)16 - 22 18 55
email: ade@esat.kuleuven.ac.be

Abstract-This paper presents a brief description of our achievements and
current research on the implemention of a fast digital simulator for
Artificial Neural Networks. This simulator is mapped either on a Parallel
Digital Signal Processor (DSP) or on a set of Field Programmable Gate
Arrays (FPGA). We already developed powerful tools that automatically
compile a graphical neural network description into executable code for the
DSPs, with the flexiblity to adjust weights and thresholds at run-time. The
next step is to realise similar tools for the FPGAs.

INTRODUCTION

The simulation of Artificial Neural Networks is mostly done on a digital
computer. Yet it is commonly known that this remains a very time consuming
job, even on a powerful workstation.

A possible answer to this problem is to implement the network on a parallel
computer. We chose the latter to be either a Parallel Digital Signal Processor or
Field Programmable Gate Arrays. The DSP (Motorola 56001) is chosen because
its typical multiply-accumulate structure exactly reflects the weighted
summation part of a neuron. With the alternative, the FPGA components (Xilinx
3090), we have the advantage of a hardware implementation, which is faster
than its software counterpart.

We already developed tools that automatically translate a neural network
description into executable code for a parallel DSP, and are developing similar
tools to generate configuration code for a set of FPGAs. This allows for rapid

! This work has partly been sponsored by the Belgian Government under the
Concerted Action on Applicable Neural Networks

2 Senior Research Assistant of the Belgian National Fund for Scientific
Research

597
0-7803-0557-4/92$03.00 © 1992

prototyping of various alternative neural networks, and for fast simulation with
the possibility of changing parameters, like weights and thresholds, at run-time.
Of course the result can also be used as a digital implementation as such. The
class of neural networks that we chose to work with, is described next.

First, for the neuron model, we assume all inputs and outputs to be binary
valued. Each neuron calculates a weighted sum of its inputs. To this summation,
a parameterised threshold is added. Both the weights and the threshold have
deterministic, digital values. The result is evaluated by a non linear function, for
which we assume a binary step function.

Next, a network model is determined that can be realised on both DSPs and
FPGAs. Because of the two dimensional implementation and the limited
interconnection density on the FPGAs, the most suited choice is a layered
feedforward model, also known as the perceptron model, described in [1].

A typical application is a pattern classifier, as described by [2], although any
network that can be represented by the given model can be implemented.

It should be noted here that on DSPs almost any digital neural network could be
simulated. At this moment however, we focus on the binary valued case since
this is sufficient for the intended applications.

With the above described model, the functionality of a neural network can be
determined completely at the design stage. If the application itself is also a strict
function, all efforts can be concentrated on the implementation problem itself
and on checking the correct behaviour after implementation. For this reason, our
main goal is to realise any generalised symmetric function (GSF), [3], and some
boolean functions. However, these can be regarded as elementary circuits to
build larger functions. Hence, every function that can be realised by GSFs and
some boolean functions only also belongs to the range of possible realisations.
An example of this is an n x n digital multiplier. This is an extremely
computation intensive application that covers all aspects of implementation, and
hence is a good test case. Moreover, in [4] is shown that a neural implementation
of a digital multiplier is even faster than a digital AND/OR gate
implementations using the same chip area.

The GSFs are specified to the programming environment via a truth table, out of
which it will compose the network by repeating and adapting a basic neuron.
The tools to synthesize an implementation on DSPs or FPGAs from the GSF
truth table are part of GRAPE-II, the second generation of the GRAphical
Programming Environment for parallel computers, developed in our group, [5].
The main idea is to generate executable code fully automatically, starting from
the specification of the algorithm and the target hardware. Facilities for
debugging and run-time evaluation are built in. Up to now, all efforts were
concentrated in the domain of homogeneous parallel processor programming.
Only recently, we began expanding the environment to the domain of
programmable hardware.

In the next section more details are given about generalised symmetric functions,
which are used as the example applications throughout the paper. The second

598

section describes the steps necessary to convert such a function into a neural
network, while the last two sections describe the mapping of this network on
DSPs and FPGAs respectively. Finally, the paper states some conclusions and
points out the direction for further work.

PROPERTIES OF GENERALISED SYMMETRIC FUNCTIONS

Let x=(xr_1,...x1,x0) be a boolean input vector.

A Boolean function is called generalised symmetric when its value only depends
on ||x||, the weighted summation of the input vector's elements, defined as
Ixll=w;_1.x;_1+...+Wq.x1+Wq.xg. This principle is described for a subclass, the

purely symmetric functions, in [3]. Examples of GSFs are the majority function
and the exclusive-or function.

It is clear from this definition that a GSF is well suited to be calculated by
neurons. One advantage of using neurons instead of the classical two level
AND/OR gate realisation for GSFs, is to keep the fan-in of all neurons only
linearly dependent on the number of inputs of the function. This is not the case
for the classical realisation, where the fan-in of the second level gates increases
exponentially with the number of inputs. E.g. for an exclusive-or function, the

fan-in of the second level gates can be shown to be 2“'1, n being the number of
inputs.

SPECIFICATION

The specification of such a neural network is done via the graphical interface of
GRARPE, see [S]. When the neural network is already known, its graph is used as
the primary input, together with a specification of the target hardware. On the
other hand, a function could be given, e.g. as a truth table, for which the
environment itself has to construct a neural network.

In the first case, when the graph is entered, it is transformed into code by a code
generator. The code for the neurons depends on the choice of hardware, as will
be explained in the last step for the function specification.

When the input is a function, the first step is to break it down into parts that can
be implemented by (multiple) GSFs or by logic gates. This high level
specification is written in coded form to a data base, which is the central part of
GRAPE.

Then, a choice is to be made concerning the target hardware. If FPGAs are
chosen, the function will be automatically converted down to neuron level
before implementation. On the other hand, for DSPs, all parts can be
implemented the way they are specified at the present level, or can be expanded
further to lower levels, until the neuron level is reached. Expanding the parts at

599

the highest level is done by specifying the constructing GSFs. At the next level
the GSFs can be expanded to neurons. This allows for simulation at different
levels of the hierarchical network.

When this is finished, further partitioning will split (or group) the parts into
entities that fit on one chip, being either a DSP or an FPGA. Next, code for each
part of the network is generated. For the lowest level parts, the neurons, this is
done by repeatedly retrieving out of a library the code for a general neuron, and
adapting it to its specific data. Although basically the neuron model is the same
for both DSP and FPGA, this general code is of course dedicated, so the library
contains two coded neurons. Specific details about the neuron model for each
target hardware are given in the respective sections. For the higher level parts, a
file containing the assembly code for the DSP is generated.

The final result is a partially or complete neural network that models the
specified function. All tools that are invoked next to map the network onto either
DSPs or FPGAs, are target specific, since they need to take into account the
specific properties of the target hardware. They are described in the next
sections.

DSP IMPLEMENTATION

The basic principles of the neuron model we adopted, are already given in the
introduction. Once the target hardware is specified, some more details are
available. The general neuron for a DSP has the weights and the threshold built
in as parameters. It is written in assembly language and defined as one macro,
which is stored in the data base. The number of inputs is limited to 126, since
the number of parameters that can be passed to a macro is limited. The weights
as well as the threshold can be up to 24 bits long, which is the word length of the
DSP, as long as the sum of the weighted inputs and the threshold does not
exceed the 24 bits either.

For each neuron in the network, this macro is activated and the code is
customised to the values for weights, threshold and inputs that were determined
in the previous phases.

The resulting description is then compiled to executable code for the parallel
processor. This roughly involves three steps : partitioning and assignment,
scheduling, and routing.

Partitioning divides the network into subtasks, which are then assigned to the
available processors. Care should be taken to group intercommunicating tasks as
much as possible on the same processor. This way, the number of interprocessor
communications is reduced to a minimum, so it is expected that the total
interprocessor communication time is also kept low with respect to the
computation time. In the scheduling phase, the execution order of the subtasks
on each processor is determined, independent of their computation times. The
data bits that are the inputs to the subtasks are also given a number to specify the
sequence in which they will be used. This allows for handling both internal and

external unexpected interrupts when the application is being executed, since the
exact duration of each part is not critical for proper execution. Tasks can be
stopped and later on resumed, as long as the correct sequence is obeyed.

Control of the asynchronous communication is done by receive and send
communication primitives, generated in the routing phase. Data for processors
that can not be directly reached, is passed through other DSPs via buffers until it
is at its destination.

The next step is evaluation of the network. An average speed of 106 connection
updates per second and per DSP is reached. The values of the weights and
thresholds can be changed at run-time. Of course, changing the neural network
structure requires to go through all steps again, starting from specification,
which is still fast and completely automatic.

In summary, these tools are capable of automatically generating out of a
graphical description of a neural network the executable code for a very fast
parallel machine.

This part of the simulator project is already finished and working properly,
hence we started expanding it with the FPGA implementation, as described in
the next section.

FPGA IMPLEMENTATION

The neuron for FPGAs is built on the same basic principles as the DSP neuron,
but has to deal with restrictions on area and routing resources. Therefore we
limit the number of inputs to some reasonable number like eight, and the weights
to a five bit value. The threshold may have any value, but will be truncated to
the maximum possible sum+1, which takes no more than eight bits.

Generally, the neuron for an FPGA consists of two separate parts. The first one
performs the weighted summation on the inputs and produces the sum in binary
coded form. The second part takes this binary number as input, together with a
threshold value, and calculates the step function. The threshold and step
orientation are defined as parameters.

When the desired network behaviour can be fully realised at the design stage, all
parameters are completely known at compile time. With this knowledge it is
preferable to generate neurons with minimal area occupancy, since this will
speed up computation, and allow for larger networks to be implemented on a
fixed number of FPGAs. This is done by a program that creates the summation
part for each neuron taking into account the exact number of inputs and their
weights. The logic is interconnected in a way that obtains the fastest execution
possible, and that allows for the compilation program to remove all unnecessary
logic. Then a comparator is added, for which the model is either a 'less than
threshold' or a 'greater than threshold’ function. Since the threshold is known at
compile time, this logic can be simplified, which again leads to a minimal use of
area.

601

An example for a neuron with four inputs being x0, x1, x2 and x3, with
respective weights equal to 6,9, 10 and 11, is given in Fig.1.

x® x1

x1 =B =0 o5
a8/ x3 g — x2 ™
=0 x3) = x3 o4
sl 3
a0 sl 82 83 84
| { | | |]
comparator
I
out

Fig.1 An example neuron implemented with minimal area

Each column in the summation part calculates a sum bit, where the rightmost bit
represents the MSB of the sum. All sum bits needed go to the comparator, the
result of which is the neuron output.

For each neuron, the program stores the required amount of area together with
the maximal execution time in number of clock cycles. The area information
will be used in the partitioning and assignment step to meet the restrictions on
available area and routing resources per FPGA. Some extra area will be
necessary on each FPGA to buffer off chip inputs and outputs. Note that this
kind of neuron does not require any control logic, as long as the inputs are kept
stable until the result is calculated. For the entire network however, some control
logic will be needed to communicate with the outer world.

After partitioning and assignment, the maximum execution time for the
complete network can be calculated.

A next point of investigation handles multiplexing several neurons in time on the
same piece of hardware. When these neurons are not identical, it would be
required to adapt the parameters of the implemented neuron before evaluation of
each neuron to be multiplexed on it. Of course, these changes need to be done at
run time. Since this is not feasible with the method presented, we can only allow
for identical neurons to be multiplexed. This is not really interesting since
generally only very few ncurons in a network are identical, so the gain in area
would be too small to compensate for the extra area needed to control the
multiplexing operation.

Consequently, an other neuron model was developed in which all parameters are
explicitly stored in registers that can be reloaded with other values at run time.
This allows for implementing time multiplexing, and is also a well suited model

if parameters should not be fixed after compilation, which will permit studying
the network behaviour for different values of weights and thresholds.

In this new model, the number of inputs is kept constant at eight, while the
weights cannot go beyond five bits, but if the maximum weight of the
application requires less bits, this can be specified. The neurons then will be
implemented with that smaller number. The threshold is stored in an appropriate
number of flipflops. The model is shown in Fig.2 and stored in a library for
different numbers of weight bits.

w4 w3 w2 wlwl

in1|
in2
in3) wumsu
= counter [to[ta][ta]ta[ea]es]. ..
= TIILLLE

o0s od [
in6| L1111
in7| comparator]
ins| T

out

o 11 12 18 4

Fig.2 Model of a neuron allowing for changing weights and threshold at run time

Binary inputs are 'anded’ with the digital weight bits and then shifted into the
counter, one at a time, to produce the sum word, which is then compared with
the threshold. The shifting of the inputs only begins when all inputs have
arrived.

New weights and thresholds can be loaded by using special control lines, one for
the weights, and one for the threshold, and using one input line through which
the values are shifted in bit by bit.

The amount of area required for the neurons and controllers will again be
generated by the program, as will be the execution times. For the same neuron
execution times seem to be competitive with those for the minimal area neurons.
Of course, these neurons will be mostly larger than is strictly necessary. In
addition, a rather large controller is required for each neuron. This
inconvenience can be eased by using only one controller per layer in the
feedforward network, at the expence of execution time. Of course, when a layer
is implemented on several FPGAs, each one of them needs a controller. This
should be kept in mind at the partitioning and assignment phase.

Some extra control logic will be needed here also to take care of the
communication with the outer world.

For both approaches, compilation of the global code will then generate a
configuration file for each of the FPGAs, very similar to the compilation for the
parallel DSP to executable code. The first step is also partitioning of the network
followed by assignment to the available components. The main criterion in this

603

case is the amount of area occupied on one FPGA, rather than computation and
communication time.

The routing phase is simplified with regard to the DSPs by allowing only
directly connected Xilinx components to communicate with each other.

Because the execution parallelism of the programmed tasks on one FPGA is
inherent to its structure, the scheduling phase can be completely omitted, except
when multiplexing multiple neurons on the same hardware is considered. For the
latter case, scheduling will give rise to the design of extra control logic.

With these limitations on routing and scheduling, a basic version of the
simulator can be developed that will mainly concentrate on the assignment and
partitioning part. We plan to add the omitted options on routing and scheduling
in a more advanced stage.

When compilation is done, evaluation can start. Inputs and outputs are directly
available at the I/O pins, while the system can also provide for in circuit test
points by bringing them out through unused 1/O pins of an FPGA. These signals
are all automatically redirected by the environment to the user interface.

At this point, the first neuron model is already available from the library.
Partitioning and assignment are still done manually, but from that point on, the
tools we developed perform all further steps. The other model is presently under
development.

CONCLUSION

In this paper we explained how we succeeded to implement a flexible and fast
neural network simulator on DSPs, answering an existing need in the field of
neural network research. At present, the first steps in expanding the environment
to provide for an implementation on FPGAs are already set. The global strategy
followed for this case is very similar to the DSPs, with adaptation to the
properties and limitations of the new components.

We started with the development of two neuron models, one for minimal area
use and one to provide for changing weights and thresholds at run time. Next, a
tool has been worked out that translates the network once it has been partitioned
and assigned, into suitable code to program the components. It does not yet
support time multiplexing. The tools for the interfacing with GRAPEII, and for
the partitioning and assignment, and for scheduling are under development.

REFERENCES

[1] M. Minsky and S. Papert, Perceptrons : an_introduction to
computational geometry, Cambridge, MA: MIT PRESS.

2] C.E. Cox, W. E. Blanz, "Ganglion - A fast field programmable gate
array implementation of a connectionist classifier" , in RJ 8290 (75651), IBM
research division, Almaden, November 9, 1990.

[3] M. Paterson, N. Pippenger, U. Zwick, "Faster Circuits and Shorter
Formulae for Multiple Addition, Multiplication ‘and Symmetric Boolean
Functions", in Proceedings of the 31st Annual Symp. on Foundations of Comp.
Science, St. Louis, Missouri, Oct. 22-24, 1990, pp. 642-650.

[4] R. Lauwereins, J. Bruck, "Efficient Implementation of a Neural
Multiplier”, in Proceedings of the Int. Conf. on Microelectronics for Neural
Networks, Kyrill & Method Verlag, Ed. U. Ramacher, U. Ruckert, J. Nossek,
Oct. 16-18, 1991, Munchen, Germany, pp.217-230.

(5] M. Engels, R. Lauwereins, J. Peperstraete, "Rapid Prototyping for

DSP Systems with Multiprocessors" , IEEE Design&Test of Computers,
Vol.8,No.2,June 1991,pp.52-62.

605

